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Abstract

Cascaded regression approaches have been recently
shown to achieve state-of-the-art performance for many
computer vision tasks. Beyond its connection to boosting,
cascaded regression has been interpreted as a learning-
based approach to iterative optimization methods like the
Newton’s method. However, in prior work, the connection
to optimization theory is limited only in learning a mapping
from image features to problem parameters.

In this paper, we consider the problem of facial de-
formable model fitting using cascaded regression and make
the following contributions: (a) We propose regression to
learn a sequence of averaged Jacobian and Hessian matri-
ces from data, and from them descent directions in a fashion
inspired by Gauss-Newton optimization. (b) We show that
the optimization problem in hand has structure and devise
a learning strategy for a cascaded regression approach that
takes the problem structure into account. By doing so, the
proposed method learns and employs a sequence of aver-
aged Jacobians and descent directions in a subspace or-
thogonal to the facial appearance variation; hence, we call
it Project-Out Cascaded Regression (PO-CR). (c) Based on
the principles of PO-CR, we built a face alignment system
that produces remarkably accurate results on the challeng-
ing iBUG data set outperforming previously proposed sys-
tems by a large margin. Code for our system is available
fromhttp://www.cs.nott.ac.uk/ yzt/.

1. Introduction

Regression is a standard tool for approaching various
computer vision problems like human and head pose esti-
mation [30, 12], deformable model fitting [7, 37], object
localization and tracking [33], and face and behaviour anal-
ysis [24] to name a few. Typically, regression-based meth-
ods wish to learn a function that maps object appearance
to the desired target output variables. Being discrimina-
tive in nature and by capitalizing on the very large anno-
tated data sets that are now readily available, they have been
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Figure 1. Project-Out Cascaded Regression vs Gauss-Newton op-
timization. In prior work in face alignment, given the current esti-
mate of the landmarks’ location (a)-(b), image specific Jacobians
are calculated to be used in analytic gradient descent. In (c), the
image Jacobian with respect to the 3rd shape parameter is shown.
In this work, we propose regression to learn a sequence of av-
eraged Jacobians from data, and from them descent directions. In
(d), the learned averaged Jacobian with respect to the 3rd shape pa-
rameter for the first level of the cascade is shown. Notably, PO-CR
learns averaged Jacobians from which facial appearance variation
is projected-out.

shown to produce state-of-the-art performance for many of
the aforementioned tasks. At the same time, regression-
based methods enjoy a high degree of computational effi-
ciency in both training and testing. In this work, the focus
is on regression-based fitting of facial deformable models
to unconstrained images, also known as face alignment in-
the-wild. Arguably, for this problem, regression-based ap-
proaches have recently emerged as the state-of-the-art.

A plethora of regression methods have been employed to
tackle the above mentioned problems including linear and
ridge [4], Support Vector [31], Boosted [13], Gaussian pro-
cess [26], and more recently, Deep Neural Nets [18]. A
recent notable approach that is of particular interest in this
work is the so-called Cascaded Pose Regression (CPR) [11].
CPR is an iterative (cascaded) regression method that is re-
lated to boosting with the main difference being that it uses
pose-indexed features i.e. features that are sampled from
the image based on the current pose estimate. This idea
has been shown to produce excellent results on a variety of
tasks and, owing to its efficiency and accuracy, it has been
recently extensively explored by a number of authors for the
problem of face alignment [6, 38, 32, 40, 39, 27, 1, 17].
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Regression, as a learning-based solution to optimiza-
tion, dates back to the seminal work of [7]. More recently,
the Supervised Descent Method (SDM) [38] considers the
problem of fitting deformable models to facial images using
non-linear least squares optimization and derives CPR as a
supervised (learning-based) solution to that problem. As
we show hereafter, in prior work (including [7] and [38]),
(a) the connection to optimization theory is limited only in
learning a mapping from image features to problem param-
eters, (b) there is no attempt to estimate the Jacobian and
Hessian matrices (key concepts in optimization) and (c) the
structure of the optimization problem in hand is not taken
into account.

1.1. Contributions and main results

In this paper, we consider the problem of facial de-
formable model fitting using cascaded regression and make
the following contributions:

e We propose regression to learn a sequence of averaged
Jacobian and Hessian matrices from data, and from
them descent directions. Our method is inspired by
prior work on Gauss-Newton optimization for fitting
facial deformable models but rather than calculating
image specific Jacobians to be used in analytic gradi-
ent descent, we propose cascaded regression to learn
a sequence of averaged Jacobians from data, one per
iteration.

e We show that the optimization problem in hand has
structure and devise a learning strategy for a cascaded
regression approach that takes the problem structure
into account. In particular, we propose Project-Out
Cascaded Regression (PO-CR), a cascaded regression
approach for fitting facial deformable models to un-
constrained images that learns and employs regressors
in a subspace orthogonal to the appearance variation.
In particular, the key idea in the proposed learning
strategy for PO-CR is to compute a sequence of aver-
aged Jacobians from which facial appearance variation
is projected-out.

e Based on the principles of PO-CR, we built a face
alignment system and tested it on the most popular fa-
cial databases, namely LFPW [3], Helen [19], AFW
[41] and iBUG [28]. Notably, our system produces
remarkably accurate results on the challenging iBUG
data set outperforming previously proposed systems
by a large margin. Code for our system is available
from http://www.cs.nott.ac.uk/ “yzt/.

We note that there are many examples of computer vision
problems including bundle adjustment [34, 20], parameter-
ized model fitting [15, 23] and detection/tracking [14, 16],
in which the resulting optimization problems have structure;

for example, the underlying normal equations might exhibit
a sparse block or circulant structure [5]. Within the pro-
posed formulation, our results show that this structure must
be exploited during learning to produce accurate and robust
solutions during testing.

1.2. Related work

The proposed Project-Out Cascaded Regression (PO-
CR) is a cascaded regression approach and hence the start-
ing point for our work is the CPR of [11]. CPR is an itera-
tive regression method in which the output of regression at
iteration £ — 1 is used as input for iteration k, and each
regressor uses image features that depend on the current
pose estimate. This idea was explored for the problem of
face alignment in [6] where the authors demonstrated ex-
cellent results on the LFPW data set [3]. The proposed
PO-CR is a cascaded regression approach that is derived as
a solution to a non-linear least squares optimization prob-
lem for fitting generative deformable models to facial im-
ages and as such is related to the recently proposed SDM
of [38]. Interestingly, the connection between regression
and non-linear least squares optimization dates back to the
original Active Appearance Model (AAM) formulation of
[7]. None of these approaches however proposes to learn a
sequence of averaged Jacobian and Hessian matrices from
data nor takes into account the problem structure in the for-
mulated optimization problem as suggested by PO-CR. This
structure has been occasionally explored by a number of
authors in the context of fitting facial deformable models
to images using analytic gradient descent (Gauss-Newton
optimization) [15, 23, 25, 35], with well-known examples
being the Project-Out Inverse Compositional algorithm of
[23] and, more recently, the Gauss-Newton generative de-
formable part model of [36]. Notably, in these methods, the
update of the shape parameters at each iteration is found by
projecting-out the facial appearance variation from the im-
age specific Jacobian. A similar idea is explored for learn-
ing in the proposed PO-CR. See also Fig. 1.

2. State-of-the-art in face alignment

The problem of face alignment has a long history in
computer vision and a large number of approaches have
been proposed to tackle it. Typically, faces are modelled
as deformable objects which can vary in terms of shape
and appearance. Much of early work revolved around the
Active Shape Models (ASMs) and the Active Appearance
Models (AAMs) [8, 7, 23]. In ASMs, facial shape is ex-
pressed as a linear combination of shape bases learned
via Principal Component Analysis (PCA), while appear-
ance is modelled locally using (most commonly) discrim-
inatively learned templates. In AAMs, shape is modelled
as in ASMs but appearance is modelled globally using PCA
in a canonical coordinate frame where shape variation has
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been removed. More recently, the focus has been shifted
to the family of methods coined Constrained Local Mod-
els (CLMs) [9, 22, 29] which build upon the ASMs. Be-
sides new methodologies, another notable development in
the field has been the collection and annotation of large
facial data sets captured in unconstrained conditions (in-
the-wild) [3, 41, 19, 28]. Being able to capitalize on large
amounts of data, a number of (cascaded) regression-based
techniques have been recently proposed which achieve im-
pressive performance [37, 6, 38, 32, 27, 1, 17]. The ap-
proaches described in [38, 27, 1, 17] along with the part-
based generative deformable model of [36] are considered
to be the state-of-the-art in face alignment.

3. Project-Out Cascaded Regression

The proposed Project-Out Cascaded Regression (PO-
CR) uses generative models of facial shape and appearance
fitted via cascaded regression in a subspace orthogonal to
the learned appearance variation. In the following sections,
we describe (a) the facial shape and appearance models em-
ployed by PO-CR (section 3.1), (b) the optimization prob-
lem which provides the basis for learning in PO-CR (section
3.2), (c) the learning and fitting process in PO-CR (section
3.3), and finally (d) the differences between PO-CR and re-
lated prior work (section 3.4).

3.1. Shape and appearance models

In this section, we describe the shape and appearance
models employed by the proposed PO-CR. In particular,
we use a parametric global shape model and a paramet-
ric part-based appearance model akin to the ones originally
proposed in [10] and more recently employed in [36]. A
notable difference from recent work on cascaded regression
is that we use parametric generative models for shape and
appearance both learned via PCA from an annotated train-
ing set as explained below. Although recent regression ap-
proaches advocate the use of non-parametric shape mod-
els [6], the parametric one employed here is more compact
having far less number of parameters to optimize. Addi-
tionally, learning a generative appearance model is a key
idea in PO-CR. In contrast to recently proposed cascaded
regression methods, PO-CR learns and employs averaged
Jacobians and descent directions in a subspace orthogonal
to the learned appearance model.

As in most works in face alignment, we assume a super-
vised setting where a set of training facial images I, are an-
notated with u fiducial points. For each image, the set of all
points is a vector € R?“*! that is said to define the shape
of each face. To learn the shape model used in PO-CR,
the annotated shapes are firstly normalized using Procrustes
Analysis. This step removes variations due to similarity
transformations (translation, rotation and scaling). Then,
PCA is applied on the normalized shapes to obtain the shape

model. The model is defined by the mean shape sy and n
shape eigenvectors s; compactly represented as columns of
matrix S € R2uxn, Finally, to model similarity transforms,
S is appended with 4 additional bases as described in [23].
An instance of the shape model is given by

s(p) = so + Sp, 6]

where p € R"™*! is the vector of the shape parameters.

To learn the appearance model used in PO-CR, each
training image I; is warped to a reference frame so that sim-
ilarity transformations are removed. Then, a descriptor (e.g.
image patch or SIFT [21]) describing the local appearance
around each landmark is computed and all descriptors are
stacked in a vector € RV*! which defines the part-based
appearance of I;. Then, PCA is applied on the part-based
representations of all training images to obtain the appear-
ance model. The model is defined by the mean appearance
A, and m appearance eigenvectors A; compactly repre-
sented as columns of matrix A € RY*™, An instance of
the appearance model is given by

A(C) =Ay+ Ac, (2)

where ¢ € R™*! is the vector of the appearance parame-
ters.

3.2. Optimization problem for PO-CR

In this section, we formulate and solve the non-linear
least squares optimization problem which provides the basis
for learning and fitting in PO-CR. Similarly to [38], we will
proceed by employing analytic gradient descent [23, 35]
which will give rise to Eqgs. (7) and (8). Then, in the next
section, we will use Egs. (7) and (8) to devise the learning
and fitting process for the proposed PO-CR.

The derived optimization problem below is akin to the
one described in [36] with one difference being that here
we consider forward rather than inverse fitting algorithms.
Note that the fundamental difference between PO-CR and
all the aforementioned works (including the method de-
scribed below) is that PO-CR proposes a regression-based
solution as opposed to analytic gradient descent.

Let us denote by I(s(p)) € RYV*! the vector obtained
by generating v landmarks from a shape instance s(p) and
concatenating the computed descriptors for all landmarks.
To localize the landmarks in a new image, we would like to
find p and c such that

arg min|[L(s(p)) — A(©)]” 3)

To find a locally optimal solution to the above problem, we
iterate the following procedure: given a current estimate of
p and c at iteration k, we perform a first-order Taylor ap-
proximation in a similar fashion to the Lucas-Kanade algo-
rithm [2]. Then, an update for p and c can be found by
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solving the following optimization problem

arg Argigc |1(s(p)) + J;Ap — Ag — Ac — AAc|?, @)

where J; € RNV *™ is the image specific Jacobian with re-
spect to the shape parameters.

Let us define Aq = [Ap;Ac] € RMF™Ix1 J, =
[J; — A] € RN*("#m) and Hy = JTJ,. Then, a so-
lution for Aq at iteration & can be found from

Aq=-H,;'J](I(s(p)) — A(c)). (5)

As we may observe at each iteration one needs to solve
for both Ap and Ac. Fortunately, there is an alternative way
that by-passes the computation for the optimal Ac at each
iteration and guarantees an exact update for Ap by taking
into account the problem structure. This structure can be
readily seen by writing

o= [pr Hpc} _ { JTy; —J}FA}
4 Hcp Hcc - ATJI Em ’
where E,, = AT A is the m x m identity matrix.

To take advantage of the problem structure, we firstly
optimize the problem of Eq. (4) with respect to Ac. The
optimal Ac is readily given by

Ac=AT(I(s(p) + J/Ap— A(e)), (6

which as we may observe is a function of Ap. Then, we
plug in the solution back to Eq. (4) [5, 15, 35]. By doing
so, we end up with the following optimization problem

argnAli;lHI(s(p))+J1AP—AOH%7 (7

where we have used the notation ||x||3y = x? Wx to de-
note the weighted ¢5-norm of a vector x. The solution to
the above problem is readily given by !

Ap = —Hp'JL(I(s(p)) — Ao), ®)

where Jp = PJrand Hp = JEJp, P =E — AAT isa
projection operator that projects out the facial appearance
variation from the image Jacobian J;, and E is the identity
matrix. Note that the Jacobian, the Hessian and its inverse
need to be re-computed per iteration giving rise to an algo-
rithm with complexity O(nmN + n?N) per iteration.

To summarize, we have derived Egs. (7) and (8) from an
analytic gradient descent perspective. In the next section,
we will describe the learning and fitting process for the pro-
posed PO-CR as a regression-based solution to Egs. (7) and
(8).

! Alternatively, we could use Schur’s complement to derive Ap, but this

way does not allow us to derive (7) which is used in PO-CR for learning
averaged Jacobians from data. See also section 3.3.

3.3. Learning and fitting in PO-CR

Learning in PO-CR is based on Egs. (7) and (8). In
particular, as we may observe from Eq. (8), at each itera-
tion calculating Ap requires (a) computing the image Jaco-
bian, (b) projecting-out the facial appearance variation from
it and (c) computing the Hessian and its inverse. Based on
this procedure, we propose to adopt a similar idea for our
learning strategy in PO-CR.

In particular, for notational clarity let us first make the
dependency of variables on iteration k explicit. Then, the
key idea in PO-CR is to compute from a set of training
examples an averaged Jacobian J(k) from which the fa-
cial appearance variation is projected-out. The averaged
projected-out Jacobian, denoted as Jp(k), is then used to
compute an averaged projected-out Hessian and descent di-
rections. In detail, our learning strategy for PO-CR is as
follows:

Step I. Starting from the ground truth shape parameters
p; for each training image I;,¢ = 1,...,H, we gener-
ate a set of K perturbed shape parameters for iteration 1
pi;(1),7 =1,..., K that capture the statistics of the face
detection initialization process. Using the set Ap; ;(1) =
p; — pi (1), PO-CR learns the averaged projected-out Ja-
cobian Jp(1) = PJ(1) for iteration 1 by solving the fol-
lowing weighted least squares problem

H K

arg min oD I(s(pi (1)) + I(1)AP; (1) — Agl[3,
P =1 j=1

©)

where the solution for J p(1) is obtained using ridge-
regression 2. Notice that the above optimization problem
is formulated in P. As our experiments have shown work-
ing in this subspace is necessary for achieving good perfor-
mance. See also section 4. R

Step II. Having computed Jp(1), we further com-
pute the averaged projected-out Hessian H p(l) =
jp(l)ij(l) and its inverse.

Step II1. Given J p(1) and H p(1)71, the descent direc-
tions R(1) € R™ ¥ for iteration 1 are given by

R(1) = Hp(1)"'Tp(1)". (10)

Step IV. For each training sample, a new estimate for
its shape parameters (to be used at the next iteration) is ob-
tained from

Pij(2) = pi;(1) + R(1)I(s(pi;(1))) = Ag).  (11)

Finally, Steps I-IV are sequentially repeated until conver-
gence and the whole process produces a set of L regressor
matrices R(l),l =1,..., L.

2Notice that by simple mathematical manipulation, the £2-norm in Eq.
(9) becomes a function of J p(1).
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During testing, and in a similar fashion to cascaded re-
gression techniques, given a current estimate of the shape
parameters at iteration k, p(k), we extract image features
I(s(p(k))) and then compute an update for the shape pa-
rameters from

Ap(k) = R(k)(I(s(p(k))) — Ao). (12)

Finally, after L iterations we obtain the fitted shape. No-
tice that the complexity per iteration is O(nN) only, and
hence at testing time PO-CR maintains the high degree of
computational efficiency typically characterizing cascaded
regression techniques. We note that optimized implementa-
tions of such methods have been shown to operate in tens of
frames per second (e.g. [38, 1]).

3.4. Comparison with prior work

In this section, we highlight similarities and differences
between the proposed PO-CR and related prior work in an-
alytic gradient descent and cascaded regression.

Against AAMs. The proposed project-out formula-
tion is reminiscent of the well-known Project-Out Inverse
Compositional (PO-IC) algorithm used in AAM fitting
[23]. Both algorithms work in a subspace orthogonal to
the appearance variation and have the same computational
complexity per iteration (O(nN)). However, PO-IC pre-
computes and employs an image Jacobian from the mean
appearance Ao which remains fixed in all iterations. In
contrast, PO-CR proposes Eq. (9) and regression to pre-
compute a sequence of averaged Jacobians from data, one
per iteration. PO-IC is an approximate algorithm for solv-
ing the problem of Eq. (4) [35]. In contrast, PO-CR uses
Egs. (7) and (8) as a basis for regression, i.e. the exact
method for solving the problem of Eq. (4).

Against SDM. Both PO-CR and SDM learn a sequence
of regression matrices (one per iteration) and during fitting
the update of the shape parameters is computed in a very
similar fashion. Both methods have similar computational
complexity. However, SDM uses non-parametric shape and
appearance models as opposed to the parametric ones em-
ployed by PO-CR. More importantly, learning in PO-CR
and SDM is very different. SDM learns directly a map-
ping from image features to problem parameters. In con-
trast, PO-CR learns a set of averaged Jacobian and Hessian
matrices from data, and from them descent directions in a
subspace orthogonal to the appearance variation.

4. Experiments

4.1. Performance evaluation

In this section, we evaluate the performance of PO-CR
for the problem of face alignment in-the-wild. To this end,
we conducted a large number of experiments on the most
popular facial databases, namely LFPW [3], Helen [19],

AFW [41] and iBUG [28]. We compare the performance
of PO-CR with that of a variant of our method as well as
with that of two publicly available systems.

In-house. As in [36], we used the SIFT implementation
of [38]. For training, we used the training sets of LFPW and
Helen and the available landmark annotations of the 300-W
challenge [28]. In addition to PO-CR, we implemented a
version of our method in which the project-out component
was intentionally omitted. This version simply replaces the
projected-out Jp (k) with J(k), i.e. the solution to Eq. (9)
but after dropping the projection operator P. We simply
denote this method as “No projection”. We included this
version in order to illustrate the importance of working in a
subspace orthogonal to the learned appearance variation.

Publicly available systems. We compared the perfor-
mance of PO-CR with that of two publicly available sys-
tems: SDM [38] and Chehra [1]. SDM was trained on in-
ternal CMU data that are not publicly available, and Chehra
on the whole LFPW, Helen, AFW and iBUG data sets in-
cluding data that is not publicly available. We note that the
training data for Chehra included the test sets of LFPW, He-
len, AFW and iBUG on which we report performance be-
low, and hence Chehra has an inherent advantage over all
other methods.

For initialization, we used the ground truth points to
compute the ground truth bounding box for each image (ro-
tation angle was removed). This bounding box was then
scaled and translated according to a noise distribution, de-
fined by standard deviation o. In this way, we could identify
the range of initializations that SDM [38] and Chehra [1]
can handle. We used a noise level of o,ie = 3.5 for which
both methods performed very well on LFPW. We found that
Chehra works satisfactorily for noise level up to o5 = 5.
For the same noise level (i.e. oyise = 5) our systems op-
erates with literally no loss in performance. To measure
performance, we used the point-to-point (pt-pt) error nor-
malized by the face size defined in [41]. We report the cu-
mulative curve corresponding to the percentage of images
for which the error was less than a specific value. To facil-
itate comparison with [38] and [1], we report performance
on the 49 interior points.

Fig. 2 shows our results on LFPW, Helen, AFW and
iBUG. From these results, we can draw a number of inter-
esting conclusions: (a) LFPW and Helen are the “easiest to
fit” data sets, followed by AFW and iBUG. It seems that
iBUG is by far the most challenging data set. (b) By re-
moving the project-out component from our method (“No
projection”- cyan), fitting performance drops dramatically.
In fact, this method performs the worst compared to all
other methods. This shows the importance of the proposed
project-out formulation. (c) Our system consistently pro-
duces the most accurate results on all data sets. (d) Our sys-
tem is the most robust among all other methods producing
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Figure 2. Average pt-pt Euclidean error (normalized by the face size) vs fraction of images for LFPW, Helen, AFW and iBUG. We compare
the performance of Project-Out Cascaded Regression (black), our approach without projecting-out (cyan), SDM [38] (magenta) and Chehra

[1] (yellow). The average error is computed over 49 points.

literally the same fitting accuracy on all data sets, including
iBUG.

4.2. Fitting results from the iBUG data set

As the iBUG data set is the most challenging among all
data sets but contains only 135 images, in Figs. 3 and 4, we
present the fittings produced by PO-CR for all 135 images
of this data set as well as the bounding box initializations
used (produced by noise level opeise = 5). As it can be
observed, our system is able to fit images with very large
shape and appearance variation even for the case of chal-
lenging initializations.

5. Conclusions

We proposed Project-Out Cascaded Regression, a cas-
caded regression approach derived from a Gauss-Newton

solution to a non-linear least squares problem that has struc-
ture. The learning strategy in PO-CR capitalizes on this
structure to compute averaged Jacobians from which the fa-
cial appearance variation is projected-out and then employs
the projected-out Jacobians to compute descent directions.
The fitting process in PO-CR is similar to that of other cas-
caded regression techniques and hence our method main-
tains a high degree of computational efficiency. We con-
ducted a large number of experiments on the most popu-
lar facial databases, namely LFPW, Helen, AFW and iBUG
that show that our system outperforms state-of-the-art sys-
tems sometimes by a large margin.
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4

Figure 3. Application of Project-Out Cascaded Regression to the alignment of the iBUG data set. For each image, the black bounding
box shows the face detection initialization. Our algorithm is able to produce highly accurate fittings for images with very large shape and
appearance variation even with challenging initializations. The first 70 images of the iBUG data set are shown.
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Figure 4. Application of Project-Out Cascaded Regression to the alignment of the iBUG data set. The fittings and the initializations for the

remaining 65 images of the iBUG data set are shown.
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