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Abstract

Visual classifiers are part of many applications includ-
ing surveillance, autonomous navigation and scene under-
standing. The raw data used to train these classifiers is
abundant and easy to collect but lacks labels. Labels are
necessary for training supervised classifiers, but the label-
ing process requires significant human effort. Techniques
like active learning and group-based labeling have emerged
to help reduce the labeling workload. However, the possi-
bility of collecting label noise affects either the efficiency
of these systems or the performance of the trained clas-
sifiers. Further, many introduce latency by iteratively re-
training classifiers or re-clustering data. We introduce a
technique that searches for structural change in hierarchi-
cally clustered data to identify a set of clusters that span a
spectrum of visual concept granularities. This allows us to
efficiently label clusters with less label noise and produce
high performing classifiers. The data is hierarchically clus-
tered only once, eliminating latency during the labeling pro-
cess. Using benchmark data we show that collecting labels
with our approach is more efficient than existing labeling
techniques, and achieves higher classification accuracy. Fi-
nally, we demonstrate the speed and efficiency of our system
using real-world data collected for an autonomous naviga-
tion task.

1. Introduction
Classification is an important task for many visually in-

telligent systems, but there are a variety of challenging
properties associated with visual data that make it difficult.
Some of these challenges include changes in illumination,
scale, perspective, color and background clutter. Classifiers
try to account for these factors, but often need large amounts
of training data to learn these variations. While collecting
visual data is a trivial task, the raw data itself contains no
label information for training supervised classifiers.

Label collection is a burdensome task for human anno-
tators, and unfortunately may not be a one time event. For

example, military robots may be constantly moving to new
domains where new training data must be collected (see
Section 5). Fortunately, efficient labeling schemes have
emerged to help alleviate some of the labeling workload,
while still producing sets of labeled data capable of train-
ing high performing classifiers. In the context of this paper,
efficiency is defined relative to the workload required from
a fully supervised system, i.e., hand labeling each image in
the training set individually.

Active learning [9, 10, 11, 12, 15] reduces the workload
by requiring only a subset of the most informative images
in the training data to be labeled. The label collection pro-
cess and classifier performance are tightly coupled in these
frameworks since classifiers are re-trained on each iteration
to help select the next samples to label. Like a fully super-
vised approach, active learning applies labels at the level of
individual data samples (seen in Figure 1(a)). Thus, these
frameworks are only efficient if a subset of the unlabeled
images can sufficiently train classifiers.

Group-based labeling [4, 14, 16, 18, 19] is potentially
more efficient than instance-based labeling because a sin-
gle label is assigned to a group of images simultaneously
(as in Figure 1(b)). Unlike active learning, group labeling
can be a noisy strategy if a group contains data from multi-
ple visual concepts. This may occur when data are grouped
using feature patterns that represent a concept broader than
the classifier label set. Assigning the dominating class label
trades some label accuracy for efficiency, but some tech-
niques avoid label noise all together. Examples include col-
lecting binary constraints to iteratively improve clustered
output [2, 22], removing images from a group that do not
match the dominating label [7] or only collecting labels
from groups that represent exactly one concept [21]. All of
these approaches result in more effort or latency to assign
noise-free labels.

This paper introduces a group-based labeling technique
that balances the trade-off between efficiency and label ac-
curacy more effectively than previous techniques. Our ap-
proach uses hierarchical clustering to establish a space of
groupings across a spectrum of visual concept granulari-
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(a) Instance-based labeling
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(b) Group-based labeling

Figure 1. Illustration of two different labeling approaches given a set of unlabeled images.

ties. By maintaining the hierarchy, our system can search
for groups that match the concept granularity of the clas-
sifier and thereby keep label noise to a minimum. These
groups are identified by searching for large local structural
changes in the hierarchy. Overall, our labeling framework
identifies a subset of clusters from the hierarchy that can be
labeled with little effort, produce minimal label noise and
train high performing classifiers.

Using two benchmark datasets we show that our hier-
archical cluster guided labeling approach is more efficient
than state of the art labeling approaches and achieves higher
classification accuracy. Further, we demonstrate the speed
and feasibility of our labeling system in a real-world sce-
nario. Since no latency is introduced during the labeling
process, a single human annotator can label new training
data in less than 45 minutes for an autonomous navigation
task.

2. Background

Many techniques have been introduced to address the la-
beling workload problem. In the context of this paper, we
discuss the labeling process as applying an object or scene
class label to unlabeled data samples. A data sample may
be an image from a dataset or a region from within an im-
age, but each sample is assigned a single ground truth label.
Note that the same techniques could be used to assign labels
to videos or other types of data.

Labeling interactions look different for each technique,
but a definition of labeling effort applicable to all techniques
needs to be established to make direct comparisons. The
remainder of this section discusses existing labeling tech-
niques and how labeling effort is computed for each.

2.1. Labeling effort

In this paper, the task is to collect labels for supervised
classifiers. Without an efficient labeling technique, the total
effort of a fully supervised approach would be to provide a
label to every training sample. Thus, the effort required to

label a dataset with n training samples is defined as:

Labeling Effort =
# interactions

n
(1)

An interaction is different for every labeling system, but
is an overall representation of the number of times a human
annotator provides information to the system. The follow-
ing types of interactions are used in techniques that address
labeling workload:

1. Providing a class label for an image [9, 10, 11, 12, 15]

2. Providing a class label for a group of images [4, 7, 13,
16, 18, 19, 21]

3. Indicating that a group lacks a common label [21]

4. Removing an image from a group [7]

5. Indicating whether or not two images represent the
same label [2, 22]

We note that not all of the interactions in the list have the
same cognitive load. However, an in-depth analysis of cog-
nitive differences and their impact on labeling efficiency is
beyond the scope of this paper. While we treat each interac-
tion equally when discussing labeling effort, we will discuss
some of the major performance differences with respect to
cognitive load in the comparisons made in Section 4.

2.2. Related work

There are two dominating approaches used to address
the labeling workload problem: active learning and group-
based labeling. Active learning tries to identify the most
informative subset of training samples to train classifiers.
Selection criteria includes probabilistic uncertainty sam-
pling [9, 10, 11], Gaussian process models [12] and infor-
mation density [15]. Active learning reduces the number of
labels provided by a user, but may require a priori knowl-
edge for classifier seeding and introduces latency while it-
eratively re-training classifiers.
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Figure 2. Hierarchical clustering of five classes from the 13-Scenes dataset. Dotted line highlights the data grouped as the coarse-grained
visual concept openness.

Group-based labeling provides a single label to a group
of samples. Clustering [4, 14, 19] and topic modeling [16,
18] form groups through bottom-up discovery, requiring no
a priori knowledge of the unlabeled data. These techniques
try to find a one-to-one mapping between groups and vi-
sual concepts. Unfortunately, visual data properties make
grouping difficult and groups often contain data from mul-
tiple classes. Assigning the dominating class label to the
entire set of images can create significant label noise.

Label noise has been reduced at the cost of additional
labeling effort and labeling latency. Active clustering im-
proves group coherency by iteratively collecting constraints
to augment feature representation [2, 8, 22]. Lee and Grau-
man cluster the “easiest” subset of unlabeled data and label
a single group at each iteration to improve overall group
coherency [13]. Largest subset labeling removes all label
noise by asking a user to remove images from a group that
do not represent the dominating class label [7].

One oversight of existing group-based techniques may
be their lack of exploitation of the hierarchical semantics
that visual data exhibits. Hierarchical labels appear in many
related visual problems. Taxonomies of image datasets,
collected via crowdsourcing, display hierarchical seman-
tics [3]. Also, Deng et al. use label semantics to define
binary hierarchical queries to efficiently label the existence
of visual concepts in multi-label images [5]. In previous
work, we used hierarchical clustering to relax the one-to-
one grouping constraint, but the hierarchical structure only
served as a basis to form a set of groups and was never
fully exploited [21]. Specifically, this technique focused on
noise-free labeling by incrementally training a coherency
model on-line, using previously labeled groups and their
associated stability measure. The model predicted the like-
lihood that groups represented a single visual concept, but
only the selected groups that were 100% coherent received
labels.

This paper differs from existing techniques in many
ways. First, it purposefully seeks to identify groups that
span multiple concept granularities, which are encoded in

the hierarchical clustering. Second, it exploits the struc-
tural relationships in the hierarchy to select groups to label.
Finally, it avoids labeling latency caused by re-training, re-
clustering and online-modeling.

3. Hierarchical cluster guided labeling
Our labeling system is designed to be quick and efficient

so new sets of labeled training data can be collected by a sin-
gle human annotator in mere hours or less. Our approach,
called hierarchical cluster guided labeling (HCGL), labels
groups of images to train classifiers. HCGL selects a subset
of groups from a hierarchical clustering of unlabeled data
covering a range of visual concept granularities.

One disadvantage of group-based labeling is the addi-
tion of label noise when images in the same group represent
multiple visual concepts. As discussed before, one reason
this can occur is that similarities come in a range of gran-
ularities. For example, grouping images of coast and high-
way together makes sense at a very coarse-granularity be-
cause these scenes share an openness quality since the hori-
zon is visible. Also, images of dog, cow and sheep share a
coarser-grained label of animal. Groupings are influenced
by feature representation, intra-class and inter-class simi-
larity, which are hard to manage explicitly with a flat parti-
tional grouping algorithm.

Instead of forcing groupings to occur at a particular level
of granularity, we use hierarchical clustering to maintain a
spectrum of image groupings. Figure 2 illustrates this con-
cept with a hierarchical clustering of five classes from the
well known 13-Scenes dataset [6]. Nodes colored black cor-
respond to groups that contain images from multiple scene
classes. The remaining colors indicate groups of images
from a single scene class. There is a natural division of
the hierarchy into four groups: tall building (green), liv-
ing room (blue), suburb (yellow) and the coarse-grained
concept of openness (dashed outline) previously mentioned.
The many smaller, inter-weaved partitions of the coast (red)
and highway (orange) classes is evidence of high inter-class
similarity. By maintaining the hierarchical structure, we can



search for locations in the hierarchy that coherently corre-
spond to the classifier label set, and thereby reduce label
noise.

The data hierarchy, denoted as H, is redundant in the
sense that if a group’s samples are from a single class, its
descendants (which are subgroups) inherit that class label.
Therefore, not every group in the tree needs to be labeled.
Instead, we select a subset of groups from H that repre-
sent possible candidate concepts. In Figure 2, this includes
groups that represent scene categories, and groups that rep-
resent concepts such as openness or outside. HCGL selects
these groups by looking at the local structural changes in-
duced by splits in the hierarchy. This selection forms a set
of unordered groups, S, where S ⊂ H. After selecting S,
an ordering of the groups is established for labeling.

3.1. Modeling structural change

To keep S concise, only groups formed from significant
structural changes, after a split in H, are added to the sub-
set. Structural change is used as an indicator of a change in
visual concept. Specifically, we suggest that the dominate
direction of variance of a group of data, in a high dimen-
sional feature space, provides information about the under-
lying structure and corresponding concept of the samples.
When there is a change in the direction of variance, the un-
derlying concept of a group may also change.

We represent the internal structure of a group inH by the
eigenvectors of the covariance matrix of its samples. Local
structural change is found by comparing the internal struc-
ture of a group, c, to one of its ancestors. In this paper, the
comparison is modeled as the angle between c, and its par-
ent, p (relationship seen in Figure 3). Specifically, the angle
between the first eigenvector of c and p, denoted as vc and
vp respectively. Formally, structural change for group c is
defined as the cosine distance,

∆(c) = 1.0− |cos(〈vc, vp〉)|, (2)

which yields values in the interval of [0.0, 1.0], where large
∆ values represent large angles.

Most groups inH have at least some structural difference
from their parent, but S should represent only the splits that
are likely to result from a change of concept. To detect these
transitions, HCGL looks for large changes in structure fol-
lowed by a lack of structural change in local neighborhoods
of H. In other words, if the structural change of c is a local
peak with respect to p and its children, cr and cl (relation-
ship illustrated in Figure 3), it is added to S. Formally, S
contains any c that satisfies the following two conditions:

∆(c) > ∆(p)

∆(c) > ∆(cr,l)
(3)

S has two important properties. First, groups in S are not
necessarily disjoint because every image belongs to many
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Figure 3. Illustration that depicts the relationships for group c in a
local neighborhood of H, including its parent p and left and right
children, cl and cr .

related groups in the hierarchical structure. Second, select-
ing peaks in structural change does not guarantee that every
image will be represented in S. We discuss the first prop-
erty in the context of the group labeling order in the next
section. The second property may result in only a fraction
of the training data receiving labels, which is analyzed dur-
ing experimental evaluation.

3.2. Group labeling

Flat partitional grouping forms a set of disjoint groups,
labels each group, and then trains a classifier with the col-
lected data. HCGL is different because groups in S are not
necessarily disjoint. The ordering of groups in S is mean-
ingful because if a group is given a class label, all descen-
dants of this group (according to the structure in H) inherit
that label, and thus no longer need to be labeled by the an-
notator.

There are many ways S can be ordered. Since groups
have already been selected as meaningful based on their
structural change, by default HCGL ranks groups in de-
scending order by their ∆ value. The idea is to order groups
by the strength of their potential concept transition. During
labeling, when a group is given a class label, any of its de-
scendants that exist in S are removed since they inherit the
label. Thus, the total labeling effort of HCGL is not equal
to |S|, but depends on the labeling order and the number
of inherited labels. The entire HCGL process is outlined in
Algorithm 1.

Algorithm 1 Hierarchical Guided Cluster Labeling
Require: H

1: S = {}
2: for all c ∈ H do
3: relatives = {p, cl, cr}
4: if ∆(c) > ∆(r) , ∀ r ∈ relatives then
5: S = S ∪ {c}
6: S = sort(S,∆)
7: while S 6= ∅ do
8: label querying→ S[0]
9: update(S)

As mentioned earlier, groups selected for S represent a
range of visual concept granularities. At the time of label-



ing, a group of images may be shown to an annotator that
represents a concept broader than the classifier label set.
The human annotator will recognize that the concept rep-
resented by the group is not relevant to the classifier and
continues to the next selected group of images. To simu-
late this in our automated labeling experiments, if more than
50% of a group’s images represent a single visual concept,
it is given the dominating class label. When a group does
not have a majority of images that map to a single label,
the group is given an irrelevant label. This query counts
towards the total level of effort, but does not provide addi-
tional labels for the classifier.

4. Benchmark data evaluation

To evaluate HCGL, we make several direct comparisons
to state of the art labeling techniques on two benchmark
datasets. These comparisons evaluate how quickly each
technique collects labeled data and how effectively the data
trains a supervised classifier. Classification accuracy on a
disjoint test set is computed iteratively after each labeling
query. It is easy to simulate human interactions automat-
ically with benchmark datasets using the available ground
truth, and automating this process allows systems to run to
completion. However, we focus our evaluation on the per-
formance achieved in the earlier stages of labeling effort to
acknowledge that labeling resources may be scarce in real-
world scenarios. For large unlabeled datasets, it may not be
feasible to provide the amount of labeling effort that auto-
mated experiments provide.

Comparisons to HCGL are made using a set of diverse
labeling frameworks that require different types of labeling
interactions. These methods include:

• SAC (Spectral Active Clustering [22]) - active cluster-
ing approach that queries for 20 binary constraints per
iteration to improve one-to-one clustered output, fol-
lowed by majority labeling

• SG (Selective Guidance [21]) - hierarchical clustering
approach that models group coherency for selection
and only labels groups that contain images from ex-
actly one class

• MKML (Multiple Kernel Metric Learning [7]) - iter-
ative clustering approach that labels the largest subset
of samples with the dominating class and removes im-
ages that do not match this label

These techniques are compared and analyzed using classi-
fication accuracy versus labeling effort results on one scene
and one object dataset. For all experiments, HCGL builds
H using agglomerative clustering with Ward’s linkage [20]
and Euclidean distance. Each experiment is averaged over

Figure 4. Comparison of classification accuracy versus labeling
effort on the 13-Scenes dataset.

10 trials of random training/testing partitions. Finally, clas-
sification performance of a fully supervised labeling ap-
proach is also computed to indicate the upper bound on per-
formance.

4.1. Scene labeling and classification

For the first experiment, we use the 13-Scenes dataset [6]
that is comprised of images representing 13 natural scene
classes. GIST descriptors [17] are used to represent each
image, and an 80/20 partition is used to divide the data into
training and testing sets, respectively. For classification, we
train an SVM classifier using the same parameters found in
existing efficient labeling literature [11, 21].

Using code made available by the authors, we directly
compare the performance of HCGL to that of SAC and SG.
Results of this experiment can be seen in Figure 4. With
only one-tenth of the effort needed to fully label the dataset,
HCGL outperforms the other techniques and approaches su-
pervised performance. SAC requires a significant amount
of effort before any improvements are made and reasonable
classification performance is achieved. In fact, the labeling
effort exceeds the effort required to fully label the dataset
(indicated by the vertical dashed line). Recall however, that
SAC queries for binary constraints, which are cognitively
easy to answer but only provide a single bit of information.
Thus, it is not surprising that many binary queries are re-
quired. Eventually SG reaches a higher classification per-
formance than HCGL, but this marginal performance boost
comes at the cost of about three times more effort.

4.2. Object labeling and classification

Our second experiment replicates the experimental pro-
tocol used in the MKML paper [7] on the MSRC dataset.
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Figure 5. Comparison of classification accuracy for three levels of labeling effort on the MSRC dataset.

This dataset includes images of objects from 21 different
classes. In the original experiment, the authors use a 40/60
data partition. The 40% split was used to extract regions and
features representing 5 classes that were presumed known
to act as a seed to their system. HCGL assumes no known
knowledge while collecting labels and therefore does not
use this data for seeding. The other 60% is used to perform
the grouping and label collection for the remaining 16 un-
known classes. Using the collected labels, classification is
performed only on the 16 classes that were presumed un-
known, which means the 40% split can also be used at the
testing set.

Each image in the MSRC dataset contains multiple ob-
jects to be labeled, so the images are first segmented into
regions. Each region is treated as a separate data sample
that represents a single visual concept. We use the pub-
licly available segmentation and appearance feature extrac-
tion code used by Lee and Grauman [14] to generate regions
for the MSRC dataset. While the image region set is not
identical to the set used by MKML, we achieve the same
supervised nearest neighbor classification performance as
MKML, indicating that the sets of training data are effec-
tively equivalent.

A comparison between HCGL and MKML can be seen
in Figure 5. The MKML results (Figure 5(a)) are an al-
ternative view of the authors’ original presentation (Figure
10 [7]). The three bars correspond to their proposed largest
subset labeling technique, a majority labeling technique in-
tended to emulate an incremental labeling system [13] and
an unsupervised baseline. Further, as mentioned earlier the
focus of comparison is on the classification results achieved
during the earliest stages of labeling effort.

The results are separated in side by side plots because
the definition of labeling effort used by MKML is slightly

different than what is defined in Section 2.1. In particular,
MKML defines effort as the fraction of images that are re-
moved from a group because they do not match the largest
subset label (interaction 4 in Section 2.1). It does not in-
clude the effort required to provide the label of the largest
subset.

When focusing on results achieved with minimal label-
ing effort, the majority labeling technique in Figure 5(a)
outperforms MKML with largest subset labeling, which is
noted by the authors. However, the majority labeling tech-
nique still performs significantly worse than the fully su-
pervised approach. HCGL uses a similar majority labeling
scheme, but outperforms all techniques from the MKML
paper. The performance gap suggests that groups in S are
more coherent than those selected in the MKML approach
since label noise impacts classification performance or re-
quires more labeling effort for the MKML largest subset
labeling approach.

4.3. Secondary evaluation criteria

Section 4.1 and 4.2 show that HCGL collects labels and
trains higher performing classifiers with less effort than ex-
isting labeling techniques. We are interested in whether the
performance of HCGL is primarily a result of the selection
of groups to form S, or a result of the ordering in which
groups of S are labeled. To probe further, we investigate
other evaluation criteria, and compare different orderings
of S on the 13-Scenes dataset. Unlabeled groups are itera-
tively selected using three selection criteria:

• HCGL-∆ - maximum structural change

• HCGL-Size - maximum number of unlabeled samples

• HCGL-Path Length - maximum path length to a la-
beled group



Figure 6. Comparison of classification accuracy versus labeling
effort on the 13-Scenes dataset for three orderings of S.

HCGL-∆ is the original ordering described in Sec-
tion 3.2 that ranks groups by the likelihood of visual con-
cept transition. Size and path length orderings are intro-
duced to emphasize other labeling goals. Ordering by size
emphasizes the efficiency at which labels are assigned. Or-
dering by path length emphasizes novel concept discovery
by selecting groups spread throughout the hierarchy. Un-
like the other two criteria, path length ordering is dependent
on previous selections. Briefly, every unlabeled group is
represented by the shortest path length between it and the
previously labeled groups. These path lengths are then used
to select the group that is least similar to what has already
been discovered and labeled.

Figure 6 shows the classification performance for the
three ordering criteria. The only major performance dif-
ference is seen very early in the labeling process when
HCGL-Size performs significantly worse the other two cri-
teria. This slow performance start is a result of selecting
large groups representing a concept too broad to be labeled,
which receive an irrelevant label. On the whole, we con-
clude that the success of HCGL is primarily a result of the
selections made to build S and less about the particular la-
beling order.

However, as a secondary form of analysis we present
other evaluation criteria that shows the emphasis of the three
ordering techniques are in fact different. These evaluations
relate to qualities that training data should probably pos-
sess. First, labeled samples should span the concept label
set. Second, there should be a sufficient number of samples
labeled. Finally, samples should be labeled accurately. Fig-
ure 7 compares the different orderings for these evaluation
criteria.

(a) Rate of discovery

(b) Percentage of samples labeled

(c) Label accuracy

Figure 7. Secondary evaluation criteria of different labeling tech-
niques.

Discovery of concepts is important for group-based la-
beling methods because most do not start with seed sets,
and classifiers can only recognize concepts that exist in the
labeled training data. Techniques that collect labels for all
k classes the fastest will likely see the fastest classification
performance boost. As designed, Figure 7(a) shows that
ordering by path length provides the best rate of discov-



ery, followed by ∆ ordering. This emphasis on discovery
is also important in explaining the performance gap seen in
the classification results.

Figure 7(b) reinforces that labeling all of S does not
guarantee that HCGL assigns a label to all training sam-
ples. Again as expected, ordering by size produces more
labeled samples faster than other orderings after it gets past
its initial selections that are too broad to label. However,
the trade-off between efficiency and label accuracy is ap-
parent when also looking at Figure 7(c). Label accuracy is
the fraction of noiseless labels collected. Ordering by size
maintains perfect accuracy for the queries where no label
is provided, but results in the lowest label accuracy of all
orderings once it begins assigning labels.

Interestingly, these evaluations suggest that training data
does not need to be perfectly accurate or labeled in its en-
tirety to achieve high classification performance. While we
do not claim that label noise has zero impact on classifica-
tion accuracy, it does not seem to degrade performance sig-
nificantly. This may be because the label noise introduced
by HCGL is not random. Label noise enters the system be-
cause data from different concepts share a similarity, which
is why they are grouped together. Overall, emphasizing dif-
ferent goals during the labeling process results in a set of la-
bels that captures the essence of S so all techniques achieve
similar classification results.

5. Labeling speed evaluation
Up to this point, the focus of evaluation has been on per-

formance with respect to the number of human interactions
during the labeling process. Since the previous experiments
could be automated with benchmark data, the evaluation
says very little about the amount of time required for a hu-
man to interact with the system. This interaction time would
include the latency introduced by many techniques that re-
cluster data or re-train classifiers.

To demonstrate the speed and real-world feasibility of
HCGL, we present the results of labeling real-world data
collected to train classifiers for autonomous robot naviga-
tion. This experiment is motivated by military applications
that frequently send robots into new domains with differ-
ent terrains or environments. Training a classifier to learn
the terrains and objects in the environment needs to happen
quickly with relatively low operator interaction.

In collaboration with a department of defense agency,
images were collected of the premises of a military train-
ing facility from a small autonomous robot. Each image
may contain several terrains (e.g., grass and dirt) or objects
(e.g., buildings and trees). An example image can be seen
in Figure 8(a). Since images contain multiple concepts of
interest, each image is over-segmented using SLIC [1], re-
sulting in a total of 5,951 segments to be used as training
data.

(a) Training image (b) Classification results

Figure 8. Example images from a real-world labeling scenario.

For this simple demonstration, a single human annotator
spent less than 45 minutes labeling this training set. We
are unable to provide a quantitative evaluation of classi-
fication performance because there is no ground truth as-
sociated with this data. However, a qualitative evaluation
of classification using test images suggests reasonably high
performance. Figure 8(b) is an example of the classifica-
tion results for a test image. Each color indicates a different
visual concept. Although the classification is not perfect,
the results are believed to be strong enough for the naviga-
tion task at hand. In very short order enough labels were
collected for the classifier to recognize eight unique terrain
and object classes.

6. Conclusion
Visual classifiers are often domain dependent. Collect-

ing data for a new domain is trivial, but attaching labels
to this data requires significant human effort. Many tech-
niques have emerged to help reduce the labeling workload.
However, these systems often require a priori knowledge
for seeding, introduce latency or struggle with how to han-
dle the collection of label noise. We have presented a hier-
archical cluster guided labeling (HCGL) system that main-
tains groups of images that represent all possible candidate
concepts in the data. By maintaining all possible grouping
granularities, HCGL can label groups that coherently match
the classifier label set so minimal label noise is introduced.
Groups of images that represent a concept that is too coarse
for use by a classifier are easily identified by an annotator
and are marked as irrelevant with very little added effort.
Our group selection method allows HCGL to collect labels
with less effort than existing approaches and produce higher
performing classifiers as well. We also demonstrated that
HCGL is feasible to use in real-world scenarios that require
fast collection of training labels with few labeling resources.
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