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Abstract

This paper addresses the problem of learning long bi-

nary codes from high-dimensional data. We observe that

two key challenges arise while learning and using long

binary codes: (1) lack of an effective regularizer for the

learned high-dimensional mapping and (2) high computa-

tional cost for computing long codes. In this paper, we

overcome both these problems by introducing a sparsity

encouraging regularizer that reduces the effective number

of parameters involved in the learned projection operator.

This regularizer not only reduces overfitting but, due to the

sparse nature of the projection matrix, also leads to a dra-

matic reduction in the computational cost. To evaluate the

effectiveness of our method, we analyze its performance on

the problems of nearest neighbour search, image retrieval

and image classification. Experiments on a number of chal-

lenging datasets show that our method leads to better accu-

racy than dense projections (ITQ [11] and LSH [16]) with

the same code lengths, and meanwhile is over an order of

magnitude faster. Furthermore, our method is also more ac-

curate and faster than other recently proposed methods for

speeding up high-dimensional binary encoding.

1. Introduction

Learning efficient representations of data is an impor-

tant task for many fields of computer science, such as com-

puter vision and bio-informatics that work with high di-

mensional inputs. In computer vision, methods for generat-

ing binary representations have been successfully used for

problems like image retrieval [31, 21, 11], image classifi-

cation [28, 10, 32], and descriptor matching [17]. While

methods for binary encoding have yielded good results, the

binary codes were kept short (tens of bits) [31, 21, 11] due

to computational and algorithmic reasons.

Recent work on representation learning using deep neu-

ral networks (DNN) [20, 7, 13] has shown that features

of thousands of dimensions or even more are useful for
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Figure 1. ANN accuracy vs. encoding time on a dataset of one

million 4096-d DNN features. Our sparse projection (SP) method,

with 5%, 10%, and 15% non-zero elements, is more accurate and

about 10× faster than ITQ [11] and LSH [16], and is more accurate

than BP [10] and CBE [32]. More details are in Figure. 2.

various recognition tasks such as object classification and

image retrieval. Unlike traditional hand-crafted features

[24, 25, 19, 26], these high-dimensional features are learned

from large-scale data [27] and thus are not structured. On

the other hand, it has been noticed that for input signals of

dimensionality d, the code-length b of the binary code re-

quired to achieve reasonable accuracy (compared with no

encoding) is usually O(d) [28, 10, 32]. Based on these rea-

sons, we consider the problem of learning long binary codes

for high-dimensional arbitrary input signals.

We observe that there are two key challenges in learning

and using long binary codes: (1) lack of an effective reg-

ularizer for the learned high-dimensional mapping and (2)

expensive cost for computing the long codes. Consider a

simple and most popular way of generating a binary code:

project the d-dimensional data by a b-by-d matrix and then

binarize by thresholding. When d is large and b ∼ O(d), the

projection could involve millions or even billions of param-

eters. A model in this large scale can easily tend to overfit

the data, if without an effective regularizer. It is also com-

putationally expensive in terms of both time and memory.

To overcome these problems, in this paper we incor-

porate a sparse regularizer in an objective function which

learns the projection matrix. This regularizer restricts the
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the number of non-zero coefficients in the projection ma-

trix. In doing so it reduces the effective number of param-

eters and reduces overfitting. In addition, the sparsity leads

to a dramatic reduction in computational cost.

Comprehensive experiments show that our method not

only leads to better accuracy than competitive dense

projection methods (Iterative Quantization (ITQ) [11]

and Locality-Sensitive Hashing (LSH) [16]) for high-

dimensional data with the same code lengths, but is also

over one order of magnitude faster. Our method is more

accurate than two recent methods (bilinear projections (BP)

[10] and circulant binary embedding (CBE) [32]) that are

designed for fast high-dimensional binary encoding. Fig. 1

shows a comparison on 4096-d DNN features.

It has traditionally been thought that the ITQ encoding

method is only applicable when the length of the desired

code is smaller than the dimensionality of the original sig-

nal, i.e., b ≤ d. As a by-product of our work, we show that

our method and ITQ [11] can naturally be applied for gen-

erating binary codes whose code lengths are larger than the

data dimensionality (b > d). We find that the “procrustes

solution” [29, 12], which is a key optimization technique

for orthogonal problems, is valid for b ≥ d. So both our

method and ITQ can be simply applied to generate longer

codes. The accuracy of both our method and ITQ increases

with code lengths in experiments.

2. Related Work

A number of recent studies have considered the problem

of high-dimensional binary encoding [10, 32]. In the bilin-

ear projections for binary coding [10], a data vector is pro-

jected by two smaller matrices instead of a single large ma-

trix, based on the assumption that the data vectors are for-

mulated by reshaping matrices. This assumption is valid for

many hand-crafted and structured features like SIFT [24],

GIST [25], VLAD [19], and Fisher Vectors [26], but is not

true for learned features such as those learned by DNNs

[20, 7]. In circulant binary embedding [32], a circulant ma-

trix is introduced to enable computation in a way like Fast

Fourier Transform. Though both [10] and [32] have shown

promising speedup, their accuracy is inferior to dense pro-

jections (like ITQ [11]) using the same code length.

3. Sparse Projections for Binary Encoding

We first introduce our objective function and regular-

izer for binary encoding. We use x ∈ R
d to denote a

data point, and X ∈ R
d×n to denote a matrix whose each

column is a datum. Our target is to learn a projection

matrix R ∈ R
b×d for producing b-bit binary codes by

B = sign(RX) ∈ {−1, 1}b×n. A widely considered ob-

jective function for binary encoding involves minimizing

the distortion, which is adopted in ITQ [11] and its variants

[10, 32]. More formally, ITQ solves the following problem:

min
R,B

‖RX− B‖2F (1)

s.t. RTR = I.

Here ‖ · ‖F denotes the Frobenius norm (the sum of the

squares of matrix elements), and I is a d-by-d identity ma-

trix. The above problem is only regularized by the orthogo-

nality constraint RTR = I, which is a weak regularizer.

To further regularize the projection of high-dimensional

data, we introduce a sparsity constraint. Our objective func-

tion is:

min
R,B

‖RX− B‖2F (2)

s.t. RTR = I, and |R|0 ≤ m.

Here | · |0 denotes the number of non-zero elements of the

matrix1, and m is a parameter that directly controls the spar-

sity of the projection matrix R. This is known as the m-

sparsity constraint [3]. Note that this problem is not convex

due to the orthogonal and the l0 constraints.

Another possible alternative to above l0-regularization

is l1-regularization: |R|1 ≤ m, where | · |1 denotes the

sum of the magnitudes of the elements. We choose l0-

regularization mainly due to two reasons. First, the l0-

regularization directly controls the number of non-zero ele-

ments and so the time/memory complexity of the projection,

while the l1 case does not have this easy control. Second, as

we will show, the l0-regularization leads to a simple hard-

thresholding solver during the optimization (Sec. 4.1). So

we focus on l0-regularization in this paper.

4. Optimization

The sparsity constraint in (2) makes it challenging to

solve for R directly. To find a feasible solution, we adopt

the variable-splitting and penalty techniques in optimization

[5, 30]. We introduce an auxiliary variable R̄. We put the

orthogonality constraint on R̄ and put the sparse constraint

on R, and meanwhile penalize the difference between R̄X
and RX. With this idea, we relax the problem as the follow-

ing form:

min
R,R̄,B

‖R̄X− B‖2F + β‖R̄X− RX‖2F (3)

s.t. R̄TR̄ = I, and |R|0 ≤ m,

where β is a penalty weight. Relaxation in this way is simi-

lar to Half-Quadratic Splitting [30]. By introducing an aux-

iliary variable, the original problem can be separated into

feasible sub-problems, and the solution to (3) will converge

to that of (2) when β → ∞ [30]. We solve (3) in an alter-

nating way: updating one variable with others fixed.

1More strictly, |R|0 should be written as |vec(R)|0. We use |R|0 for

the ease of presentation.



4.1. Fix B and R̄, update R.

This sub-problem is:

min
R

‖RX− Z‖2F (4)

s.t. |R|0 ≤ m,

where Z = R̄X is fixed. This sub-problem looks like a

sparse coding problem under the m-sparsity constraint [3].

But in commonly studied sparse coding problems [4, 23, 3]

the variable R is a vector and RX is a vector-matrix mul-

tiplication. In the following we develop a solution to the

matrix variable R used here.

Instead of directly optimizing (4), we solve this problem:

min
R,S

φ(R, S) (5)

where the new objective function φ is defined as:

φ(R, S) = ‖RX− Z‖2F + ‖X‖2F‖R− S‖2F − ‖RX− SX‖2F,
(6)

and S is a matrix of the same size as R. Due to the

sub-multiplicativity of Frobenius norm [15], the relation

‖X‖2F‖R − S‖2F ≥ ‖RX − SX‖2 always holds, and thus

φ(R, S) is no less than the objective function in (4) for any

S. So the solution to (5) gives the solution to (4). φ is known

as a surrogate objective function [22]. We minimize (5) by

an alternating algorithm as in [22]: fixing S and solving for

R, and vice versa.

(i) Fix S, update R. We expand φ and rewrite it as:

φ(R) = ‖X‖2Ftr(RTR)− 2tr(QTR) + const, (7)

where Q = ZXT + ‖X‖2FS − SXXT and tr(·) denotes the

trace. The constant does not depend on R. Based on the

definition of trace, we have an objective function in vector

forms:

min
R

‖X‖2Fr
T
r− 2qT

r, (8)

s.t. |r|0 ≤ m

where the matrices R and Q are reshaped into vectors

r and q. This problem can be easily solved by r =
thrm

(

q/‖X‖2F
)

, where thrm is an operator that keeps the

largest (in magnitude) m entries and sets the rest as zero. In

matrix form the solution is:

R = thrm

(

S +
1

‖X‖2
F

(R̄− S)XXT

)

, (9)

where we have substituted q and Z by their definitions, and

thrm keeps the largest m entries in the matrix.

(ii) Fix R, update S. Based on (6), because ‖X‖2F‖R −
S‖2F − ‖RX− SX‖2F ≥ 0 and the equality is satisfied when

S = R, the solution to this sub-problem is S = R.

Combining (i) and (ii), we obtain an iterative solution to

the problem (4):

Rt+1 = thrm

(

Rt +
1

‖X‖2
F

(R̄− Rt)XX
T

)

, (10)

where t is the iteration index. We run 30 iterations in our

algorithm. The solution in this form is known as Iterative

Hard Thresholding [3]. But the algorithm in [3] is devel-

oped for a vector variable, and here is for a matrix variable.

Following [3], we can further prove that the iterative solu-

tion in (10) converges to a local minimum.

A natural initialization to (10) is to let R0 = R̄. Then the

first iteration of (10) gives a simple result as:

R = thrm
(

R̄
)

. (11)

This one-step solution has a clear intuition: the projection

matrix R is updated by hard-thresholding the auxiliary ma-

trix R̄, keeping its largest m entries. In experiments, we will

show results using either the iterative solution (10) or the

one-step solution (11). We find that the one-step solution

gives comparable accuracy, but is much faster for training.

4.2. Fix B and R, update R̄.

With R fixed, the sparsity constraint is ignored in this

sub-problem. The two terms in (3) are both quadratic on R̄,

so the problem can be shown as equivalent to:

min
R̄

‖R̄X−Y‖2F (12)

s.t. R̄TR̄ = I,

where Y = (B + βRX)/(1 + β) is fixed. This problem is

known as the orthogonal procrustes problem [29, 12] and is

recently widely involved in encoding [11, 9].

This procrustes problem is solvable if b ≥ d, according

to [12] as follows. First compute the SVD of the matrix

XYT as XYT = UΣVT, where U is a d-by-d orthogonal

matrix, Σ is a d-by-d diagonal matrix, and V is a b-by-d
column-orthogonal matrix. Then let R̄ = VUT.

It is worth noting that according to modern studies of

procrustes problems [12], the above solution is valid for all

b ≥ d (see Chapter 5.7 of [12]), i.e., the code length is larger

than the data dimensionality. Thus our method and ITQ are

both naturally applicable for generating higher-dimensional

binary codes (b ≥ d). There have been limited understand-

ings2 that ITQ is applicable only when b ≤ d, but we find

this is not true. In the experiment section, we will show the

results of ITQ and our method even when b ≥ d.

On the contrary, the procrustes solution [12] is not valid

when b < d. Actually, this is because R̄TR̄ = I is not a

valid constraint if b < d, because rank(R̄TR̄) ≤ min(b, d)

2In [11], it states that ITQ “cannot use more bits than the original di-

mension of the data”.



while rank(I) is d. To handle the case of b < d in our

solver, we reduce X to b-dimensional by X′ = PX, where

P is a b-by-d PCA projection matrix corresponding to the

largest eigenvalues. Then we use X′ in place of X in the

sub-problem (12) for solving a b-by-b matrix R̄′. Then R̄
is given by R̄′P. Note we do not pre-project the data X by

PCA in the main problem (3), because the PCA projection

matrix P is a dense matrix, so using P as pre-processing

will ruin the sparsity of the total projection.

4.3. Fix R and R̄, update B.

This sub-problem is equivalent to minB ‖R̄X − B‖2F =
maxB

∑

i,j(R̄X)ijBij , where i, j are the indexes of matrix

elements. Because Bij ∈ {−1, 1}, this problem is easily

solved by Bij = sign((R̄X)ij), or simply B = sign(R̄X).

4.4. Algorithm Summary

We iteratively solve the three sub-problems as in

Sec. 4.1-4.3. We pre-process the data by subtracting their

mean (but no projection). We initialize R = R̄ by a ran-

dom orthogonal matrix, and start from the step of updating

B. The algorithm is run 50 iterations and finally a sparse

matrix R is produced for projecting data.

In theory, we should start from a small β in (3) and grad-

ually increase it to infinity [30]. But in experiments we find

that simply using a fixed β can lead to comparable accu-

racy, and the accuracy is insensitive to the choice of fixed β
(we tried 0.1 to 100). So we fix β = 1 for simplicity for all

experiments in this paper.

5. Experiments

We conduct experiments on three tasks: approximate

nearest-neighbor (ANN) search, image retrieval, and image

classification. We refer to our method as ‘sparse projections

(SP)’ for binary codes, and compare it with the following

methods:

• Iterative Quantization (ITQ) [11]: this is one of the

state-of-the-art binary encoding methods. In the origi-

nal paper [11], ITQ is only applicable when b ≤ d. We

generalize it to higher-dimensional cases (b > d) using

the procrustes solution described in Sec. 4.2.

• Locality-Sensitive Hashing (LSH) [16, 6, 2]: this

method simply uses a random projection matrix. De-

spite its simplicity, it has been proven [2] that the gen-

erated Hamming distance asymptotically approaches

the Euclidean distance for codes that have sufficiently

large lengths. LSH has been shown [11, 10, 32] to have

competitive performance when b ∼ O(d).

• Bilinear Projections (BP) [10] and Circulant Binary

Embedding (CBE) [32]: these methods are designed to

speed-up projections for high-dimensional data. They

are generally only applicable for the case when b ≤ d
as their objective functions involve terms like ITQ.

However, we are unaware of how to generalize the pro-

crustes solution of b > d to these methods, so we can

only show their performance in the case b ≤ d.

We use the implementations of ITQ, BP and CBE that

were released by the authors. The training step of all bi-

nary encoding methods is run in Matlab, while the evalu-

ation (encoding and ranking) is implemented in C++. All

experiments are on a server with an Intel Xeon E5-2650

CPU (2.00Ghz) and 128 GB memory. The running time is

evaluated using single-thread implementation.

We have publicly released our Matlab code3.

5.1. Approximate Nearest Neighbor Search

Experiments on DNN features

Recent researches have demonstrated the effectiveness of

the use of deep learning features as image representations

[20, 33]. We first run experiments on such features. We con-

structed a dataset that contains one million images which

are randomly sampled from the recently published dataset

of one hundred million Flickr images4. We used a CNN

model to extract image-wise features for images in the

dataset. Zeiler and Fergus’s (ZF) [33] “fast” model, which

contains five convolutional layers and two 4096-d fully-

connected (fc) layers, is used in our experiments. We train

this model on ImageNet 2012 [27], following the common

guidelines [20]. Using this network, we extract 4096-d out-

puts of the second fc layer as image features. Each image

is resized so that its smaller dimension is 256, and the cen-

ter 224×224 region is used to compute features. We refer

to this dataset as DNN-4096. An extra 1000 random sam-

ples are used as queries. Note that each 4096-d raw feature

(floating number) requires 16384 bytes (131,072 bits).

For comparison, we adopt the evaluation protocol used

by authors of ITQ [11]. The average distance to the 50th

nearest neighbors of images in the dataset is used to de-

fine the true positive samples of a query. Given a query,

images in the dataset are ranked according to their Ham-

ming distances to the query, based on their binary codes.

This is known as Hamming ranking. We then evaluate the

mean Average Precision (mAP), i.e., the mean area under

the precision-recall curve.

In Fig. 2 (a), we show how mAP changes with code

length b. This is an important comparison as code length

b directly determines the memory (storage) requirement of

the database and also the time taken to compute the Ham-

ming ranking. However, the time taken for computing the

3http://research.microsoft.com/en-us/um/people/kahe/cvpr15spbe/spbe_v1.zip
4http://labs.yahoo.com/news/yfcc100m/.

http://research.microsoft.com/en-us/um/people/kahe/cvpr15spbe/spbe_v1.zip
http://labs.yahoo.com/news/yfcc100m/
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Figure 2. Comparisons on the DNN-4096 dataset. (a) mAP vs. the

number of bits. In this sub-figure, SP has 10% non-zero elements

in its projection matrix. (b, c) mAP vs. encoding time when code

length is fixed to 4096 and 16384 bits respectively. SP in these two

sub-figures are with 5%, 10%, and 15% non-zero elements. Note

that each 4096-d raw feature (float) requires 16384 bytes (131,072

bits). The database of raw features requires ∼16GB memory, and

the database of 4096-bit codes requires only ∼500 MB.

binary code, as we will discuss later, does not only de-

pend on b. In Fig. 2 (a), the SP method has 10% non-

zero elements in the projection matrix. This figure shows

that our SP method is considerably more accurate than BP

and CBE, and is able to generate longer codes (b > d).

Our method also significantly outperforms ITQ on long

codes (e.g., b > 1024), and is slightly worse on the short

codes. Note that longer codes in general have better accu-

racy, so can be more useful in practice. On the other hand,

our method consistently outperforms LSH, except that both

methods perform nearly the same when b > 1024. Since

LSH is guaranteed to make the Hamming distance asymp-

totically approach the Euclidean distance, this results shows

that our method is also very accurate.

Though ITQ and LSH are competitively accurate in

Fig. 2 (a), they lead to computationally expensive coding

operations. We show the mAP vs. encoding time (per query)

using 4096 bits (Fig. 2 (b)) and 16384 bits (Fig. 2 (c)). Here
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Figure 4. The mAP of our SP method with different sparsity, de-

fined as the percentage of non-zero elements in the projection ma-

trix. This experiment is evaluated on the DNN-4096 dataset. To

the extreme when 100% elements are non-zero, the method de-

grades to ITQ.

SP has 5%, 10%, and 15% non-zero elements in the projec-

tion matrix. This means SP is 20×, 10×, and 6.7× faster

than ITQ and LSH for encoding, while is still more accu-

rate. In Fig. 2 (b), BP and CBE can achieve speedup ratios

similar to SP, but have poorer accuracy. BP and CBE are

unavailable for the longer codes (b > d) in Fig. 2 (c).

In Fig. 3, we show the results of SP using the one-step

solution (11) or the iterative solution (10) for the problem in

Sec. 4.1. Fig. 3 shows that they produce comparable results.

But the one-step solution is much faster. Using the one-step

solution, SP has the same training complexity as the ITQ

algorithm (as in Sec. 4.1 and 4.2), and the iterative solution

is 30 times slower for training. In the rest part of this paper,

we report results using the one-step solution.

To investigate the impact of sparsity to accuracy, in Fig. 4

we show mAP vs. the number of non-zero elements in the
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Figure 5. Comparisons on the GIST-960 dataset. (a) mAP vs. the

number of bits. In this sub-figure, SP has 10% non-zero elements

in its projection matrix. (b, c) mAP vs. encoding time when code

length is fixed to 960 and 4096 bits respectively. SP in (b,c) has

5%, 10%, and 15% non-zero elements.

projection matrix. In the case of all non-zero coefficients

(“100%”), SP becomes equivalent to ITQ. We see that there

are some “sweet points” near the sparsity of 10% non-zero

elements. This indicates a dense matrix can overfit the data,

and the sparsity constraint is an effective regularizer. Actu-

ally, a dense matrix in this figure has millions or hundreds

of millions of parameters and results in overfitting. Fig. 4

also shows that accuracy remains reasonable even when the

projection matrix has only 1% or even 0.1% non-zero ele-

ments, with encoding time 100× to 1000× faster.

Experiments on structured features

We also evaluated our method on two datasets of tradi-

tional “hand-crafted” features that are structured. The first

dataset is GIST-960 [18], which contains one million 960-

dimensional GIST features [25] and 10,000 queries. The

second dataset is VLAD-25600. The VLAD features [19]

are extracted from 100 thousands images randomly sampled

from the INRIA image set [17]. The 25600-d VLAD fea-

tures are generated by encoding 128-d SIFT vectors [24] to
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Figure 6. Comparisons on the VLAD-25600 dataset. (a) mAP vs.

the number of bits. In this sub-figure, SP has 10% non-zero ele-

ments in its projection matrix. (b, c) mAP vs. encoding time when

code length is fixed to 4096 and 16384 bits respectively. SP in

(b,c) has 1%, 5%, 10%, and 15% non-zero elements.

a 200-center codebook. An extra random subset of 1000

samples are used as queries in this dataset.

Fig. 5 and Fig. 6 show the results on these datasets, using

the same protocol as in Fig. 2. On these structured features,

our SP method still achieves competitive accuracy with the

dense projection methods (ITQ and LSH), but with substan-

tially faster encoding. Further, SP is faster and more accu-

rate than BP and CBE.

The experiments on DNN features and structured fea-

tures show that our method is robust to arbitrary features,

indicating the sparsity constraint as a regularizer is insen-

sitive to how the signal is generated. Meanwhile, the l0-

sparsity can easily control the number of non-zero elements

in the projection, and thus the time/memory consumption.

5.2. Image Retrieval

In Krizhevsky et al.’s work [20], the responses of the

second fc layer in the CNN model are used as holistic im-

age features for semantic image retrieval. We evaluate the

performance of binary encoding methods for this task, on

the “Holidays + 1M Flickr” dataset [17]. This dataset con-



Storage

(relative)
mAP

Encoding

time (ms)

4096-d (float) 1 67.1 -

1024 bits

BP 1/128 62.8 0.49

CBE 1/128 63.7 1.26

SP 1/128 64.3 0.29

4096 bits

BP 1/32 65.8 1.53

CBE 1/32 66.1 1.26

SP 1/32 66.4 1.14

8192 bits SP 1/16 66.8 2.89

16384 bits SP 1/8 67.0 6.28

Table 1. Image retrieval performance on Holidays+1M. SP has

5% non-zero elements in the projection matrix. Each 4096-d raw

feature requires 16384 bytes (131,072 bits), so the database of raw

features requires ∼16GB memory.

tains 1,419 images in 500 different scenes, with an extra one

million Flickr images as distracters. 500 query images are

provided along with their ground-truth neighbors under the

same scenes. We represent each image by a 4096-d deep

learning feature as introduced in the above experiments.

Following previous practices [18, 10, 32], we treat image

retrieval as an ANN search problem of the encoded features,

while the ground-truth neighbors are defined by semantic

labels. Given a query image, we perform Hamming ranking

and evaluate mAP using the semantic ground-truth.

Table 1 shows the results on the Holidays+1M set. We

have the following observations. (1) As a baseline of no en-

coding, the mAP of 4096-d deep learning features is 67.1%,

which is significantly higher than using 64,000-d VLAD

features (39.0% as reported in [10]). (2) We compare our

method with BP and CBE using 1024 and 4096 bits. Our

method leads to better mAP, while the encoding time is

smaller. For example, with 1024 bits, our encoding time

is only about 1/4 of CBE. (3) Our method can be used for

higher-dimensional codes (b > d) when better accuracy is

desired. With 16384 bits, our method has almost no degra-

dation (67.0% mAP) with respect to the use of the deep

learning features. (4) Table 1 also lists the storage required

for the database. Without encoding, the storage is 16 GB

for 4096-d floating number features. The binary encoding

methods can significantly reduce this cost.

5.3. Image Classification

We further evaluate the binary codes as compact features

for image classification, as in [10, 32]. For a baseline, we

use the above ZF model [33] to extract 4096-d features from

the second fully connected layer. Similar to [20], we extract

ten views (center, four corners ,and their horizontal flipping)

from an image. The ten 4096-d features of these views are

extracted, and then averaged as a single 4096-d feature. Fol-

lowing [7, 33, 13], we train a one-vs-rest linear SVM clas-

100-class

(top-1 acc.)

1000-class

(top-1 acc.)

4096-d (float) 77.1 ± 1.5 65.0

1024 bits

BP 72.9 ± 1.3 58.1

CBE 73.0 ± 1.3 59.2

SP 73.8 ± 1.3 60.1

4096 bits

threshold [1] 73.5 ± 1.4 59.1

BP 76.0 ± 1.5 63.2

CBE 75.9 ± 1.4 63.0

SP 76.3 ± 1.5 63.3

8192 bits SP 76.8 ± 1.4 64.2

16384 bits SP 77.1 ± 1.6 64.5

Table 2. Classification accuracy on ImageNet 2012 dataset (mea-

sured by top-1 accuracy) when features are encoded to binary

codes. SP has 5% non-zero elements in the projection matrix.

sifier [8] on these features using the ImageNet 2012 [27]

training set. On the 1000 classes of test set, this implemen-

tation leads to 65.0% accuracy (or equivalently 35.0% top-1

error, comparable to the testing in [13]). We also randomly

split the 1000 classes into 10 clusters (100 classes per clus-

ter), and train SVM classifiers on each of them. The average

accuracy on 100 classes is 77.1% (see Table 2).

To generate binary image representations, we apply bi-

nary encoding methods on the 4096-d features. Besides BP

and CBE, we also compare with a thresholding scheme in

[1] that binarizes by thresholding each dimension at zero.

For all methods, after binary codes are generated, linear

SVM classifiers are trained on these new representations.

Table 2 shows the comparisons. The learning-based

methods (BP, CBE and SP) are more accurate than simple

thresholding (which is only valid when b = d). Our method

is more accurate than BP and CBE with the same number

of bits. And our method can generate higher-dimensional

binary codes (b > d), which can further improve the ac-

curacy. In the case of 100-class and 16384 bits, SP shows

no degradation (77.1% accuracy) compared with no encod-

ing. In the case of 1000-class, the higher-dimensional codes

can still improve the accuracy and approach the no encod-

ing baseline. Note that these representations are still more

compact than the floating number representations, requiring

only 1/128 to 1/8 storage cost.

5.4. Discussion

In the above experiments (Fig. 2,5,6 and Table 1,2),

we find that the binary code length b required to achieve

graceful degradation (compared with no encoding) is usu-

ally around b ∼ O(d). For example, on the DNN-4096

dataset (Fig. 2), the mAP gets saturated near 8192 bits; on

the GIST-960 dataset, the mAP gets saturated near 512 bits

or 1024 bits. In the case of image retrieval (Table 1), grace-

ful degradation (<1%) is achieved with 4096 bits or more.



These observations of b ∼ O(d) justify the require-

ment of using high-dimensional binary codes for high-

dimensional data. Short binary codes (like 128 bits, see

Fig. 2) have considerable degradation of accuracy, and may

impact the quality of real-world usage. Thus in practice it

is desired to have a feasible and accurate solution to high-

dimensional binary encoding.

6. Conclusion and Future Work

We have proposed an effective sparse regularizer for

learning high-dimensional projections. The issue of overfit-

ting have drawn attention in related areas like deep learning.

The recent success of deep learning is partially contributed

by the progress of advanced regularization techniques, such

as dropout [14, 20]. We plan to investigate sparse regulariz-

ers for deep models in the future.
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