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Abstract

In many real-world applications, we are often facing the
problem of cross domain learning, i.e., to borrow the la-
beled data or transfer the already learnt knowledge from a
source domain to a target domain. However, simply ap-
plying existing source data or knowledge may even hurt
the performance, especially when the data distribution in
the source and target domain is quite different, or there
are very few labeled data available in the target domain.
This paper proposes a novel domain adaptation framework,
named Semi-supervised Domain Adaptation with Subspace
Learning (SDASL), which jointly explores invariant low-
dimensional structures across domains to correct data dis-
tribution mismatch and leverages available unlabeled tar-
get examples to exploit the underlying intrinsic informa-
tion in the target domain. Specifically, SDASL conducts the
learning by simultaneously minimizing the classification er-
ror, preserving the structure within and across domains, and
restricting similarity defined on unlabeled target examples.
Encouraging results are reported for two challenging do-
main transfer tasks (including image-to-image and image-
to-video transfers) on several standard datasets in the con-
text of both image object recognition and video concept de-
tection.

1. Introduction

In the standard machine learning technologies, the train-
ing and test data are assumed to be drawn from the same
distribution. When the distribution changes, the need to re-
built most statistical models from scratch using the newly
collected training data, however, makes the task intellectu-
ally expensive or unpractical for many real-world applica-
tions. As a result, domain adaptation would be desirable.

In general, domain adaptation involves two distinct types
of datasets, one from a source domain and the other from a

target domain. The source domain contains a large amount
of labeled data such that a classifier can be reliably built,
while the target domain refers broadly to a dataset that is
assumed to have different characteristics from the source.
Thus, simply applying the classifier learnt in the source do-
main may hurt the performance in the target domain, a phe-
nomenon known as “domain shift” [29]. Furthermore, the
labeled target data are often very few and they alone are not
sufficient to construct a good classifier. Therefore, our main
objective is to attain good performance on the target domain
by utilizing the source data or adapting classifiers trained in
the source domain. In addition, how to effectively leverage
unlabeled target data also remains an important issue for
domain adaptation.

In the literature, there have been several techniques be-
ing proposed for addressing the challenge of domain shift
by learning a common feature representation [3, 5]. The
objective is to identify a new feature representation that is
invariant across domains. With this, the source and the tar-
get domain exhibit more shared characteristics. However,
in general, these approaches highly depend on the heuristic
selection of pivot features appearing frequently in both do-
mains. Furthermore, the criterion of feature selection may
be sensitive to different applications. On the other hand,
it is assumed that visual data exist in the low-dimensional
subspaces, which can provide a meaningful description of
the underlying domain shift [11, 12, 13, 22]. Given the data
from two domains, we are investigating in this paper how
to obtain the projections of mapping the data from source
and target domains onto a subspace. The new feature rep-
resentations in this subspace should be able to reduce the
data distribution mismatch as much as possible, meanwhile
preserving the structure property of the original data. Fur-
thermore, to tackle with the challenge of target labeled da-
ta insufficiency, the unlabeled target data is also leveraged
on smooth assumption encoded in a regularizer, which has
been shown effective for semi-supervised learning [17].



By consolidating the idea of semi-supervised learning
and subspace learning for domain adaptation, this paper
presents a novel Semi-supervised Domain Adaptation with
Subspace Learning (SDASL) framework for visual recog-
nition. It attempts to learn a subspace which can manifest
the underlying difference and commonness between differ-
ent domains. When projected onto this subspace, the da-
ta distribution mismatch of the source and target domains
can be reduced and data structure properties are preserved
as well. Standard machine learning methods can then be
used in the subspace to train classifier for both domains.
More specifically, three regularizers are jointly employed
in our framework, including the structural risk regulariz-
er which seeks a decision boundary that achieves a smal-
l classification error, the structure preservation regularizer
that restricts the distance between mappings of similar sam-
ples in both source and target domains, and the manifold
regularizer based on the smoothness assumption that the
target classifier shares similar decision values on the sim-
ilar target unlabeled samples. It is worth noticing that the
proposed framework is unified and any other criterion for
domain adaptation can be easily incorporated. We demon-
strate the effectiveness of our proposed approach on both
image-to-image and image-to-video transfers, and show its
superiority to several state-of-the-arts.

The remaining sections are organized as follows. Section
2 describes related work on domain adaptation. Section 3
presents our semi-supervised domain adaptation with sub-
space learning framework including overall objective func-
tion and its algorithm for visual recognition. Section 4 pro-
vides empirical evaluations, followed by the discussion and
conclusions in Section 5.

2. Related Work
The research on domain adaptation has proceeded along

three different dimensions: unsupervised domain adapta-
tion [1, 16, 25, 26], supervised domain adaptation [2, 8, 21,
24, 28], and semi-supervised domain adaptation [9, 13, 14].

Unsupervised domain adaptation refers to the setting
when the labeled target data is not available. Shi et al.
[25] defined an information-theoretic measure which bal-
ances between maximizing domain similarity and minimiz-
ing expected classification error on the target domain. Long
et al. [16] jointly performed feature matching and instance
weighting to learn a new feature representations that is ro-
bust to domain difference. In another work by Wang et al.
[26], the problem was considered in terms of unsupervised
manifold alignment, where the source and target domains
were aligned by preserving the neighborhood structure of
the data points. Similar in spirit, Baktashmotlagh et al. [1]
made use of the Riemannian metric on the statistical mani-
fold as a measure of distance between the source and target
distributions for domain adaptation.

In contrast, when the labeled target data is available, we
refer to the problem as supervised domain adaptation. Yang
et al. [28] proposed adaptive support vector machine (A-
SVM) to learn a new SVM classifier for the target domain,
which is adapted from an existing classifier trained with the
samples from a source domain. Pan et al. [21] proposed
a new dimensionality reduction method called maximum
mean discrepancy embedding (MMDE) for domain adap-
tation, which aims to learn a shared latent space where dis-
tance between distributions can be reduced while the data
variance can be preserved. Bergamo et al. [2] exploited the
availability of strongly-labeled target training data to simul-
taneously determine the correct labels of the source training
examples and incorporate this labeling information to im-
prove the classifier by using transductive learning. Later
in [8], Duan et al. constructed a parameterized augmented
space as the common space motivated by a domain adapta-
tion method proposed by Daumé III in [5] and the parame-
ters were learnt through optimizing a large margin classifi-
cation model. The work of Saenko et al. [24] was one of
the earliest papers to investigate domain adaptation in visu-
al recognition by metric learning techniques, which aim to
learn a transformation that minimizes the effect of domain-
induced changes.

Semi-supervised domain adaptation methods have also
been proposed. Jiang et al. [14] proposed to not only in-
clude weighted source domain instances but also weighted
unlabeled target domain instances in training, which essen-
tially combines instance weighting with bootstrapping. D-
uan et al. [9] proposed to utilize the unlabeled target data
to more precisely measure the data distribution mismatch
between the source and target domains based on the maxi-
mum mean discrepancy [4]. In [13], Guo et al. developed a
subspace co-regularized method for multilingual text clas-
sification problem. It aims to minimize the training error
on the labeled data in each language while penalizing the
distance between the subspace representations of the two
languages of both labeled and unlabeled documents.

In short, our work in this paper belongs to semi-
supervised domain adaptation. Besides of the use of un-
labeled target examples as in these aforementioned semi-
supervised methods, our approach additionally incorporates
the objective of obtaining a subspace on which data distri-
bution mismatch is reduced and original structure properties
are preserved.

3. Semi-supervised Domain Adaptation with
Subspace Learning

The main goal of semi-supervised domain adaptation
with subspace learning (SDASL) is to bridge the domain
gap by jointly constructing good subspace feature represen-
tations to minimize domain divergence and leveraging un-
labeled target data in conjunction with labeled data. The



training of SDASL is performed simultaneously by mini-
mizing the classification error, preserving the structure re-
lationships within and across domains, and restricting sim-
ilarity defined on unlabeled target instances. In particular,
the objective function of SDASL is composed of three com-
ponents, i.e., structural risk, structure preservation within
and across domains, and manifold regularization. Of the
three, the former two aim to explore invariant low dimen-
sional structures across domains and meanwhile minimiz-
ing the structural risk of the learnt models on the subspace,
while the last exploits the intrinsic information in the tar-
get domain. After we obtain the predictive function on the
subspace, the label of a new coming target instance can be
determined accordingly. In the following, we will first in-
troduce the annotations used in this paper, followed by con-
structing the three learning components of SDASL. Then
the joint overall objective and its optimization strategy are
provided. Finally, the whole SDASL algorithm for visual
recognition is presented.

For simplicity, we focus on the scenario when transfer-
ring only from one source. However, the proposed method
can be extended to multiple sources. Suppose we are giv-
en plenty of labeled source data and only a limited number
of labeled target data. Additionally we are given unlabeled
target data. Our goal is to assist tasks in a label-scarce tar-
get domain by transferring the knowledge in the label-rich
source domain.

3.1. Notations

Suppose there are ls labeled samples in the source
domain, represented as: XS = {xS

1 ,x
S
2 , . . . ,x

S
ls
}⊤ ∈

Rls×ds , where ds is the dimensionality of source data.
Similarly, assume there are lt (lt ≪ ls) labeled instances
and ut unlabeled examples in the target domain, denot-
ed as: XT = {xT

1 ,x
T
2 , . . . ,x

T
lt
}⊤ ∈ Rlt×dt and XU

T =

{xU
1 ,x

U
2 , . . . ,x

U
ut
}⊤ ∈ Rut×dt , respectively. The corre-

sponding labels of XS and XT are given as column vectors
YS ∈ {−1,+1}ls and YT ∈ {−1,+1}lt , respectively.

3.2. Structural Risk

Deriving from the idea of subspace learning by assum-
ing that the feature representations in different views are
generated from this latent subspace, we project the original
features into the low-dimensional subspace to explore the
invariant structures across domains and minimize domain
divergence. Accordingly, the linear predictive functions are
defined as {

fS(x
S) = xSmSwS + bS

fT (x
T ) = xTmTwT + bT

, (1)

where wS ,wT ∈ Rd and bS , bT are the model weight and
bias parameters, respectively. mS and mT are the feature
mapping matrices, with mS ∈ RdS×d and mT ∈ RdT×d,

where d is the dimension of the subspace. The mapping
matrices mS and mT are designed to be orthogonal in order
to make each mapping basis uncorrelated to each other, i.e.,
m⊤

SmS = m⊤
TmT = I where I is the identity matrix.

Furthermore, the training objective corresponds to an
empirical risk minimization with a regularization penalty
over the model parameters {wS , bS ,mS ,wT , bT ,mT } as

min{
wS ,bS ,mS
wT ,bT ,mT

} ∥XSmSwS + bS −YS∥2 + αS ∥wS∥2

+ ∥XTmTwT + bT −YT ∥2 + αT ∥wT ∥2

s.t. m⊤
SmS = I, m⊤

T mT = I ,

(2)

where αS and αT are tradeoff parameters. The objective de-
composes into the empirical risk with a least square loss of
the labeled examples from both source and target domain-
s, and the regularization penalty ∥wS∥2 and ∥wT ∥2. The
parameter αS and αT are the tradeoff parameters.

3.3. Structure Preservation

One of the key goals in most state-of-the-art multi-view
learning [10] is to seek for a joint latent space that corre-
sponding views are mapped to nearby locations. This also
indicates that similar views should have similar mappings.
Similarly, to tackle with the challenge of domain shift, we
incorporate a discriminative regularization term in the ob-
jective function to take into account of the structure with-
in and across domains. That is, the distance between the
mappings in the latent subspace of the same category from
source and target domains should be as small as possible.

Technically, positives from both domains are represent-

ed as: A =

[
X+

SmS

X+
TmT

]
, where X+

S and X+
T denote the

positives in the source and target domain, respectively. The
distance between positives from source and target domains
is measured by tr(A⊤L1A), where L1 = D1 − 11⊤, 1
denotes a column vector with all 1 entries, and D1 is the
diagonal matrix that contains the row sums of 11⊤.

To learn a shared latent space across different domain-
s, we integrate the structure preservation within and across
domains as a regularization for domain adaptation.

3.4. Manifold Regularization

Manifold regularization has been shown effective for
semi-supervised learning [17]. This regularizer is to mea-
sure the smoothness of the predicted class labels along the
inherent structure of unlabeled target data. In other words,
the outputs of the predictive function are restricted to have
similar values for similar examples.

The estimation of the manifold regularization can be
measured by the appropriate pairwise similarity between



the unlabeled target samples. Specifically, it can be given by

ut∑
i,j=1

Sij

∥∥xU
i mTwT − xU

j mTwT

∥∥2, (3)

where S ∈ Rut×ut denotes the affinity matrix defined on
the unlabeled target samples. Under the manifold criterion,
it is reasonable to minimize Eq.(3), because it will incur a
heavy penalty if the difference between the outputs of func-
tion fT (x

T ) for similar examples is big.
There are many ways of defining the affinity matrices S.

Inspired by [10], the elements are computed by Gaussian
functions in this work, i.e.,

Sij =

 e
−
∥xU

i −xU
j ∥2

σ2 if xU
i ∈ Nk(x

U
j ) or x

U
j ∈ Nk(x

U
i )

0 otherwise
,

(4)
where σ is the bandwidth parameter, and Nk(x

U
i ) repre-

sents the set of k nearest neighbors of xU
i .

By defining the graph Laplacian L2 = D − S, where
D is a diagonal matrix with its elements defined as
Dii =

∑
j Sij , the regularization can be computed as

(XU
TmTwT )

⊤L2(X
U
TmTwT ).

This regularization term can be added to our optimiza-
tion framework, which can utilize unlabeled target exam-
ples that have auxiliary similarity information. It can al-
so be considered as a generalization of the semi-supervised
version of [17] to the domain adaptation.

3.5. Overall Objective Function

The overall objective function integrates the optimiza-
tion objectives throughout subsections (3.2-3.4). Hence we
get the following optimization problem

min{
wS ,bS ,mS
wT ,bT ,mT

} ∥XSmSwS + bS −YS∥2 + αS ∥wS∥2

+ ∥XTmTwT + bT −YT ∥2 + αT ∥wT ∥2

+γtr(A⊤L1A) + η(XU
TmTwT )

⊤L2(X
U
TmTwT )

s.t. m⊤
SmS = I, m⊤

T mT = I ,

(5)

where γ and η are tradeoff parameters.
Next we show that the optimal {wS ,wT , bS , bT } can be

solved in terms of mS and mT . We minimize the objective
function in Eq.(5) by setting its derivative with respect to
wS , wT , bS and bT to zero, which results in:{

bV =
1

lV
1⊤ (YV −XV mV wV )

}
V ∈{S,T}

wS =
[
(XSmS)

⊤HSXSmS + αSI
]−1

m⊤
SZS

wT =
[
(XTmT )

⊤HTXTmT + αT I+ ηC
]−1

m⊤
T ZT ,

(6)

where ZV , HV , and C are defined as{
ZV = Xh

V HV YV , HV = I− 1

lV
11⊤

}
V ∈{S,T}

C = (XU
TmT )

⊤L2X
U
TmT .

(7)

Note that we use V ∈ {S, T} for simplicity, i.e., V can be
replaced by any symbol of S and T .

Substituting Eq.(6) into Eq.(5), we get the objective
function:

L(mS ,mT ) = γtr((X̃SmS + X̃TmT )
⊤L1(X̃SmS + X̃TmT ))

+Y⊤
S HSYS − Z⊤

SmS(m
⊤
S M̄SmS + αSI)

−1m⊤
SZS

+Y⊤
T HTYT − Z⊤

T mT (m
⊤
T M̄TmT + αT I)

−1m⊤
T ZT ,

(8)

where X̃S = [X+
S ,0]

⊤ and X̃T = [0,X+
T ]

⊤. M̄S and M̄T

are defined as

M̄S = X⊤
SHSXS and M̄T = X⊤

T HTXT + ηXU⊤
T L2X

U
T .
(9)

From the above, the overall objective function can be
rewritten as

min
{mS ,mT }

L(mS ,mT ) s.t. m⊤
SmS = I, m⊤

T mT = I. (10)

The optimization above is a non-convex problem. How-
ever, the gradient of the objective function with respect to
mS and mT can be easily obtained and we have

∇mV L(mS ,mT ) = −2ZV Z⊤
V mV (m⊤

V M̄V mV + αV I)−1

+2M̄V mV (m⊤
V M̄V mV + αV I)−1m⊤

V ZV Z⊤
V mV

(m⊤
V M̄V mV + αV I)−1 + 2γX̃⊤

V L1(X̃SmS + X̃TmT ),

(11)

for V ∈ {S, T}.

3.6. SDASL Algorithm

To address the difficult non-convex problem (10) due to
the orthogonal constrains, we use a gradient descent opti-
mization procedure with curvilinear search for a local opti-
mal solution and readers can refer to [27] for details.

After the optimization of mS and mT , we can obtain the
linear predictive functions defined in Eq.(1) with the model
parameters {wV , bV }V ∈{S,T} calculated by Eq.(6). Next,
given a target test visual instance, x̂ ∈ Rdt , we compute the
prediction values using the linear function as

f(x̂) = x̂mTwT + bT . (12)

The label of instance x̂ is sign(f(x̂)), where sign(•) is the
signum function. The whole SDASL algorithm is given as
Algorithm 1.



Algorithm 1 Semi-supervised Domain Adaptation with
Subspace Learning (SDASL)

1: Input: 0 < µ < 1, ε ≥ 0.
2: Initialize the mapping matrices mS and mT using Prin-

cipal Component Analysis (PCA).
3: for iter = 1 to Tmax do
4: Compute gradients:

GS = ∇mS
L(mS ,mT )

GT = ∇mT
L(mS ,mT )

5: if ∥GS∥2F + ∥GT ∥2F ≤ ε then
6: Exit.
7: end if
8: Compute skew-symmetric matrices:

PS = GSm
⊤
S −mSG

⊤
S

PT = GTm
⊤
T −mTG

⊤
T

9: Set τ = 1
10: repeat
11: τ = µτ
12: Compute new trial point:

QS(τ) = (I+ τ
2PS)

−1(I− τ
2PS)mS

QT (τ) = (I+ τ
2PT )

−1(I− τ
2PT )mT

13: until Armijo-Wolfe conditions [19] meet
14: Update the transformation matrices:

mS = QS(τ)
mT = QT (τ)

15: end for
16: Compute wS , wT , bS and bT via Eq.(6).
17: Output:

Predictive function: ∀x̂, f(x̂) = x̂mTwT + bT .

4. Experiments

We conducted our experiments for both image-to-image
and image-to-video transfer tasks, i.e., object recognition
on the image dataset studied in [24], and video concept de-
tection on the challenge TRECVID 2011 Semantic Indexing
(SIN) task with the assistance of images from ImageNet [6].

4.1. Image­to­image transfer

The first experiment was conducted on the Office dataset
released in [24]. It contains three image datasets from three
different domains. The images in the first domain dslr are
captured with a digital SLR camera and have high resolu-
tion. The second domain amazon consists of images down-
loaded from online merchants (www.amazon.com). These
images are of products at medium resolution. The images
in the third domain webcam are collected by a web camera.
Thus, the images are of low resolution. Each domain con-
tains 31 categories and in total there are 4,652 images in all
the three domains. Figure 1 shows image examples of cat-
egory “bike” and “desk chair” from the three domains and
illustrates the difference or shift between domains.
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Figure 1. Image examples of category “bike” and “desk chair”
come from (top row) dslr (high-resolution images captured with
a digital SLR camera), (middle row) amazon (medium-resolution
images downloaded from online merchants), and (bottom row) we-
bcam (low-resolution images recorded by a web camera).

Compared Approaches. We compare the following ap-
proaches for performance evaluation:

• SVM-S. A SVM classifier trained only on the labeled
examples in the source domain.

• SVM-T. A SVM classifier learnt entirely from the la-
beled examples in the target domain.

• SVM-ST. An aggregate SVM classifier trained from all
the labeled samples in both source and target domains.

• A-SVM [28] aims to learn a new decision boundary that
is close to the original one (learnt on the source labeled
data) as well as separating the target data.

• FR [5] is to augment features for transfer learning. The
augmented features are used to construct a kernel func-
tion for SVM training. With this, the impact of the
examples from target domain is twice as those from
source domain on the predictions of target test data.

• Metric [24] is to learn a transformation based on the in-
formation theoretic metric learning method of [15] by
leveraging both similarity constrains within the same
categories and dissimilar constrains between the dif-
ferent categories.

• HFA [8] learns the classifier and transformations to a
common latent subspace between source and target in
a max-margin framework.

• GFK [11] integrates an infinite number of subspaces
along the geodesic flow between the source and target
domains to characterize changes in between.

• SCMV [13] assumes the representations of the same
object from different domains in the subspace should
be similar. The learning of the subspace and classifier




