
Fast Bilateral-Space Stereo for Synthetic Defocus

Supplemental Material

Jonathan T. Barron

barron@google.com

Andrew Adams

abadams@google.com

YiChang Shih

yichang@mit.edu

Carlos Hernández

chernand@google.com

1. Bilateral Representations

In the main paper, we described our bilateral representa-

tions as factorizations of a Gaussian affinity matrix A:

A ≈ STB̄S (1)

We will now dig deeper into the details of this matrix fac-

torization, and discuss the two specific bilateral representa-

tions we use: the simplified bilateral grid, and the permuto-

hedral lattice [1].

Filtering with both the permutohedral lattice and the sim-

plified bilateral grid works by “splatting” a value at each

pixel onto a small number of vertices, performing a sepa-

rable blur in the space of vertices, and “slicing” out values

at each pixel to get a filtered set of values. The difference

between the two representations is in the arrangement of

the vertices (the permutohedral lattice is tetrahedral, while

the simplified bilateral grid is rectangular), and the nature of

the splat interpolation (the lattice uses barycentric interpola-

tion, and the simplified bilateral grid uses nearest-neighbor

assignment). Intuitively, the permutohedral lattice approxi-

mates the Gaussian in the affinity function as the convolu-

tion of a tent filter (barycentric interpolation), a [1, 2, 1] blur

kernel, and another tent filter, which is a good binomial ap-

proximation of a Gaussian function. The simplified bilateral

grid approximates a Gaussian using a boxcar or “rect” filter

(nearest-neighbor interpolation) and a narrow [1,2,1] blur

kernel, which is a significantly less accurate but more ef-

ficient representation. In the factorization produced by the

permutohedral lattice, assuming that our Gaussian affinity

is in a D dimensional space, the splat matrix S has D + 1
non-zero elements per row, we have D+1 blur matrices, and

we approximate B̄ as an outer product of the blur matrices.

In the simplified bilateral grid, we have 1 non-zero element

per row of our splat matrix, we have D blur matrices, and

we approximate B̄ as the sum of blur matrices.

B̄lattice = B1B2 . . . BD+1 (2)

B̄grid = B1 +B2 + · · ·+BD (3)

Regardless of the technique or the dimensionality of the

problem, each Bd matrix has no more than three non-zero

elements per row. By approximating the blur matrix of the

grid as a sum, the effective standard deviation of the Gaus-

sian affinity being approximated is more narrow. This also

means that blurring can be made slightly more efficient by

processing all blurs in parallel rather than in sequence.

Note that in most literature, the bilateral grid [5] is imple-

mented with bilinear interpolation and is “dense” (i.e., ver-

tices are created even if they are not filled), and the blur ma-

trix is approximated as an outer product of each dimension’s

blur matrix. In contrast, our simplified grid is “sparse” —

vertices with no pixels assigned to them are never created.

This allows the grid to scale to higher dimensions than the

dense bilateral grid, which is difficult to extend beyond 3
dimensions.

Throughout the paper we repeatedly assume that A is

symmetric, which requires that B̄ be symmetric. By con-

struction we know that each Bd is symmetric, but because

of missing vertices in the grid or lattice, the outer product

of blur matrices may not be symmetric. This means that for

our math to be completely correct, we must symmetrize the

blur matrix used in for the permutohedral lattice:

B̄lattice sym = B1B2 . . . BD+1 +BD+1BD . . . B1 (4)

That being said, in practice it is possible to use the nonsym-

metric B̄lattice as though it is symmetric in our optimization

without a noticeable loss in accuracy. Because B̄grid is the

sum of symmetric Bd rather than the product matrices, it is

guaranteed to be symmetric.

To clarify, we never actually construct B̄, but we instead

we evaluate matrix-vector products with B̄ by repeatedly

evaluating each constituent blur matrix:

B̄latticex = (B1(B2(. . . (BDx) . . .))) (5)

B̄gridx = B1x+B2x+ . . .+BDx (6)

Note that, because our blur operation is a sum of blurs rather

than a product, each blur can be efficiently computed in par-

allel. For a better understanding of these bilateral represen-

tations as matrix factorizations, see Figure 1.

978-1-4673-6964-0/15/$31.00 ©2015 IEEE

(a) A toy 2D image of a step-edge on the left, and the true per-pixel affinity matrix that corresponds to that “image” on the right (dark

= high affinity, light = low affinity)

(b) The toy 2D image of a step edge with a permutohedral lattice overlaid on top. The affinity matrix described by the lattice is shown in

the middle, which we see closely resembles the true affinity matrix in Fig. 1a. We also show the matrix decomposition of A according

to the permutohedral lattice, which is a skinny and sparse “splat” matrix with 3 non-zero entries per row (where each row sums to 1), a

sequence of 3 small and sparse “blur” matrices, and a skinny and sparse “slice” matrix which is the transpose of the “splat” matrix.

(c) The toy 2D image of a step edge with a simplified bilateral grid overlaid on top. In the middle we see the affinity matrix described

by the simplified bilateral grid, which only coarsely resembles the true affinity matrix in Fig. 1a, due to the approximate nature of our

“hard” nearest-neighbor assignment of pixels to grid vertices. We also show the matrix factorization of A according to the simplified

bilateral grid, which is significantly more compact than the permutohedral lattice representation: the splice matrix is binary and has

only 1 non-zero entry per pixel (equivalent to a hard assignment of pixels to vertices), the number of vertices is reduced, and there are

only 2 blur matrices.

Figure 1: The bilateral representations that we are concerned with (the permutohedral lattice and a simplified variant of the

bilateral grid) can be viewed as special matrix decompositions of a Gaussian affinity matrix, as shown here. Here we consider

a simple one-dimensional grayscale image with a step-edge. In Fig. 1a we see the true affinity matrix that corresponds to that

grayscale image for some spatial and range standard deviation. In Fig. 1b and Fig. 1c we see that same step-edge overlaid

with the grid or lattice that the bilateral representation tessellates our Euclidean space with, and the corresponding matrix

factorization used by that bilateral representation.

2. Bilateral-Space Embedding

Let us derive the equivalence of the two versions of the

smoothness terms in our per-pixel optimization problem.

We start with the following smoothness cost:

1

2

∑

i

∑

j

Âi,j(pi − pj)
2 (7)

This is just the sum of squared differences between each

pixel’s disparity, weighted by some weight Âi,j . This can

be expanded:

=
1

2

∑

i

∑

j

Âi,j(p
2
i − 2pip+p

2
j) (8)

= −
∑

i

∑

j

Âi,jpipj

+
1

2

∑

i

∑

j

Âi,jp
2
i +

1

2

∑

i

∑

j

Âi,jp
2
j (9)

Now, let us assume that the matrix Â is symmetric and bis-

tochastic (that its rows and columns all sum to 1). With this

assumption, our smoothness term can be further simplified:

= −
∑

i

∑

j

Âi,jpipj +
1

2

∑

i

p2i +
1

2

∑

j

p2j (10)

= ||p|| − pTÂp (11)

= pT(I − Â)p (12)

Let’s work through how A can be made bistochastic. Given

that A is symmetric, we can find a diagonal matrix N that

bistochasticizes A with the simple iterative procedure of [8]:

n← ~1
while not converged do

n←
√

n/(An)
end while

N ← diag(n)

Where division is element-wise. Several iterations are re-

quired for Â to be bistochastic (usually 10-20 iterations for

errors to be less than 10−6). With N , we can compute our

bistochastic Â:

Â = NAN (13)

This bistochasticization procedure is equivalent to the fol-

lowing:

Â← A
while not converged do

Â← D−1/2ÂD−1/2

end while

Of course, this algorithm would not work in practice as we

never explicitly compute A.

A bistochasticized A is useful for many reasons. First,

some bilateral representations introduce an arbitrary scale

factor, meaning that they actually approximate some affin-

ity matrix which is only proportional to A. Bistochasti-

cization normalizes out this scale factor. Second, a com-

mon result in image filtering and spectral clustering is that

a bistochastic affinity matrix produces better results than a

singularly-stochastic matrix [9]. Third, were we to simply

row-normalize A (i.e., treat A as a simple normalized image

filtering operation) then our resulting row-normalized ma-

trix would not be symmetric. This would make optimiza-

tion less efficient, as we repeatedly take advantage of the

assumption that ÂT = Â throughout the design of our algo-

rithm. This requirement for symmetry is also part of why

we use our specific symmetry-preserving matrix normal-

ization technique, instead of other techniques like Sinkhorn

normalization.

Given the normalization matrix N returned by our

bistochasticization procedure, our variable substitution is

straightforward:

pT

(

I − Â
)

p (14)

= (STv)T(I −NAN)(STv) (15)

= vTS(I −NAN)STv (16)

= vT(SST − SNANST)v (17)

= vT(SST − SNSTB̄SNST)v (18)

We can simplify things by introducing some new variables:

pT

(

I − Â
)

p = vT(C ′

s − C ′

nB̄C ′

n)v (19)

C ′

n = SNST, C ′

s = SST (20)

Though our reformulated problem may seem fine at first

glance, our intermediate C ′ matrices hide a serious prob-

lem. Though these matrices are small (with as many rows

and columns as there are vertices), as outer products of the

splat matrix these matrices are not very sparse, and com-

puting them requires a surprisingly expensive sparse-sparse

matrix multiplication (> 1 second for a 5-megapixel image.

We would like to replace these semi-sparse matrices with

diagonal matrices, and we would like to estimate these diag-

onal matrices cheaply. This issue ties into bistochasticiza-

tion, as these C ′ matrices require the per-pixel bistochasti-

cization matrix N , which itself required repeated expensive

filtering in pixel-space.

Let us remind ourselves how we got here: we took our

bilateral affinity A, bistochasticized it in pixel-space, and

then constructed our C ′ matrices by projecting those bis-

tochasticization weights into vertex space. As a much faster

alternative, we will take advantage of the structure of A
and bistochasticize A in bilateral-space, while restricting

ourselves to diagonal C matrices. This will necessarily be

an approximation, but we should expect this approximation

to be good because A is well-approximated by our bilat-

eral representations. An additional approximation is our re-

quirement that the C matrices be diagonal, which means

that we will not model the “mixing” of the splat/slice ma-

trix, and our affinity model will accordingly become slightly

less “strong” (i.e., less inclined to smooth our disparity

maps).

Let’s investigate how we might bistochasticize our sys-

tem in bilateral-space. Naively one might assume that we

can simply bistochasticize B̄, but that approach ignores the

fact that each vertex has a different number of pixels “as-

signed” to it. Instead we must bistochasticize a version of

B̄ that is weighted by the number of pixels belonging to

each vertex — the “mass” of each vertex. Formally, this

mass is:

m = S1 (21)

What follows is a variant of the previous bistochasticiza-

tion procedure which produces a “normalized” matrix B̄ in

which the rows and columns of that matrix sum to m, while

the previously described algorithm produced a normalized

A matrix whose rows and columns sum to 1:

n← ~1
while not converged do

n←
√

(n×m)/(B̄n)
end while

Where × and / are element-wise multiplication and divi-

sion, respectively. Note that the n that we recover does not

actually bistochasticize B̄. Instead, it implicitly bistochas-

ticizes Â while staying entirely in bilateral-space. With the

recovered n, we can construct our new lightweight alterna-

tives to the C ′ matrices:

Cd = diag(n), Ci = diag(m) (22)

By construction, each C matrix is diagonal and cheap to

compute. To sanity check for why this procedure makes

sense, let us observe that:

(C ′

dB̄C ′

d)1 = (CdB̄Cd)1 = m (23)

So it seems that (CdB̄Cd) is a reasonable approximation

to (C ′

dB̄C ′

d). In practice, we have noticed no significant

difference in the quality of the output of our model whether

we use C or C ′ during inference. For all results in our paper,

we use these C matrices instead of the originally defined C ′

matrices.

3. Block-Matching Interval Cost Volume

As described in the paper, the “cost volume” in our op-

timization framework is implicitly defined as an upper and

lower range of “valid” disparity values [li, ui] for each pixel

i. Our bilateral-space embedding technique is agnostic to

any specific design decisions made in computing these in-

tervals, but of course, the choice of how these cost volumes

are computed has a profound effect on the output disparity

map.

Let us assume that we have two grayscale rectified im-

ages: I0 and I1. Given a pixel of interest at (x, y) in

I0, because of rectification we know that the correspond-

ing pixel (provided it is not occluded) lies somewhere in

I1(x + [0 : D), y), where D is the maximum possible dis-

parity assumed to be present in the input image. To compute

the lower bound for this pixel of interest, we must scan all

values x′ ∈ [x, x + D), and record the y coordinate of the

first and last matching pixels in I1. Of course, this requires

a test for whether or not two pixels “match”, which can be a

difficult task given noise and the nature of image sampling.

To deal with sampling, we use the technique of Birchfield-

Tomasi [4] to compute upper and lower envelopes for I0
and I1, and measure differences between those envelopes

instead of differences between the underlying images. This

gives us a sampling-invariant similarity measure. To deal

with noise, we artificially expand our bounds by some noise

parameter ǫ (ǫ = 4 in all of our experiments). This ad-hoc

noise model means that we generally ignore the shot noise

that is common in real images, though this is a very crude

approach largely motivated by convenience. To formalize:

U0 = max2(blur2(I0)) + ǫ (24)

L0 = min2(blur2(I0))− ǫ (25)

where max2(·) is a 2 × 2 “max” filter, min2(·) is a 2 × 2
“min” filter, and blur2(·) is a 2×2 box filter. U1 and L1 are

defined similarly. The pixel at (x, y) in I0 is said to match

the pixel at (x+ d, y) in I1 iff:

M(x, y, d) = (U0(x, y) ≥ L1(x+ d, y))

∧ (L0(x, y) ≤ U1(x+ d, y)) (26)

Where M(x, y, d) is a binary volume of matches (a “match

volume”), indicating whether or not the envelopes at (x, y)
in I0 and (x+d, y) in I1 overlap. With M(·), we can define

our upper and lower intervals as:

lx,y = arg min
d

M(x, y, d) (27)

ux,y = arg max
d

M(x, y, d) (28)

If no match is found we set lx,y = 0 and ux,y = D − 1,

causing the data term corresponding to unmatched pixels to

effectively be ignored during inference.

The upper and lower bounds as described here work rea-

sonably well, but as is often the case in stereo matching,

performance improves if patches are used instead of pix-

els. So before computing these intervals, we first filter each

channel of our match volume M with a 25× 25 “and” filter

(a) A stereo pair

(b) Our recovered lower and upper disparity bounds

Figure 2: Given the stereo pair in Fig. 2a, for each patch in

the right image we identify the set of corresponding patches

along the epipolar scanline in the left image. The upper and

lower bounds of each pixel’s matching interval are shown

in Fig. 2b. Flat, textureless regions have wide, uninfor-

mative ranges, while textured regions have tightly-localized

bounds in disparity-space. Some patches (mostly near oc-

clusion boundaries where the foreground and background

both are textured) have no corresponding patch in the right

image, shown in the visualization as white pixels.

in x and y. This means that instead of M(x, y, d) indicat-

ing a single pixel match, it indicates that all pixels in the

25 × 25 patch around (x, y) in I0 match all corresponding

pixels in the patch around (x + d, y) in I1. Evaluating the

25 × 25 “and” filter is fast, as it is separable in x and y
and can be computed recursively. Here is pseudocode for

“and”-filtering our match volume in x:

M(x, y, d)←M(x, y, d) (29)

∧ M(x− 1, y, d) ∧ M(x− 2, y, d)

∧ M(x+ 1, y, d) ∧ M(x+ 2, y, d)

M(x, y, d)←M(x, y, d) (30)

∧ M(x− 5, y, d) ∧ M(x− 10, y, d)

∧ M(x+ 5, y, d) ∧ M(x+ 10, y, d)

Filtering in y is done similarly.

This block-matching similarity is particularly brittle: a

patch only matches another patch iff all constituent pixels

of both patches match, according to our Birchfield-Tomasi

pixel similarly metric. This may seem like a questionable

design decision, but it produces desirable behavior at occlu-

sion edges. At occlusions, it is very rare for the image con-

tent at both sides of the occluding edge to match (unless the

background and the foreground look similar, in which case

we can produce inaccurate depth without affecting defocus

image quality). This means that our intervals tend to only

provide information on the textured interiors of objects, and

provide little information at object edges. Given that infor-

mation is scarce at object edges, our output disparities near

object edges are largely “inpainted” according to bilateral

similarity. This gives us the nice edge-aware disparity maps

that are characteristic of our technique.

This block-matching interval-finding procedure is fairly

efficient even if implemented naively. Computing the

Birchfield-Tomasi envelopes is simple, and performing a

pixel match requires just two comparisons. Even naively

computing all of M is fairly efficient because, unlike stan-

dard cost-volumes whose entries are usually 8-bit or 32-bit

values, our match-volume is composed of booleans and so

can be stored compactly. This same property makes our

25 × 25 “and” filter especially fast, because if 64 values of

M are stored as a single 64-bit value they can be and-ed to-

gether with a single “and” operation. We implemented this

block-matching procedure in Halide [10], which allows us

to easily “schedule” our code such that M is never explicitly

in memory at once.

See Figure 2 for examples of our upper and lower bounds

for a stereo pair.

4. Efficient Cost-Volume Splatting

In the paper, we claimed that it is possible to compute a

weighted sum of hinge losses by first computing a weighted

sum of delta functions, and then integrating that sum twice.

More formally, assuming that we have a set of hinge losses

with weights wi and hinge-locations ai, we know that:

∑

i

wi max(0, x− ai) =

∫∫

∑

i

wiδ(x− ai) (31)

This equivalence is demonstrated in Figure 3.

5. Multiscale Optimization

As is often the case during optimization, convergence

can be made faster by allowing optimization to proceed in a

course-to-fine fashion, or to happen simultaneously at mul-

tiple scales. We will borrow the multiscale optimization

technique from [3], but adapt it from Gaussian pyramids

of images to pyramids of bilateral representations. We will

construct a hierarchy of bilateral representations and solve

our optimization problem in that hierarchical space, thereby

allowing optimization to proceed in a multiscale fashion.

When we construct a bilateral representation (a grid or

lattice), we produce a splat matrix S and a matrix of vertex

coordinates V . In our case, V is an m by 5 matrix, where m
is the number of vertices and 5 is the dimensionality of our

bilateral-space (where the dimensions correspond to each

vertex’s RGB color value and XY pixel position). With this

(a) hinge losses (b) weighted deltas

(c) weighted Heavisides (d) total loss

Figure 3: Efficiently “splatting” our data term loss from

pixel-space to bilateral-space requires that we exploit some

properties of hinge-loss. In Fig. 3a we have a set of losses

we wish to splat, shown in terms of their constituent upper-

bound (red) and lower-bound (blue) losses as well as the

total splatted loss (black), which can inefficiently be com-

puted as the sum of the constituent losses. In Fig. 3b we

have a splat (a weighted histogram) of the unsigned second

derivatives of our constituent hinge-losses, which are delta

functions. By integrating these second derivatives (where

the lower-bound costs are integrated right-to-left and the

upper-bound costs are integrated left-to-right) we get the

summed Heaviside functions shown in Fig. 3c, and by inte-

grating these again we get the total upper-bound and lower-

bound losses and their sum in Fig. 3d, which is the same as

the total loss shown in Fig. 3a. This accelerated approach of

splatting hinge losses by splatting and integrating their sec-

ond derivatives is orders of magnitude faster than the naive

approach when the number of losses being splatted is large.

matrix of vertices we can construct a more coarse bilateral

representation on top of these “base” vertices, and then re-

peat that procedure until convergence to form a pyramid:

for k = [1 : K] do

V ← V/2
(Sk, V)← bilateral representation(V)

end for

Where K is the number of scales, which we set to be as

large as possible until we are left with just a single vertex at

the top of the pyramid. We repeatedly divide all the vertex

coordinates by 2, and then construct a new bilateral repre-

sentation from those reduced coordinates, effectively down-

(a) an image

(b) grid pyramid

(c) lattice pyramid

Figure 4: When optimizing, we construct a pyramid of bi-

lateral representations for an image and solve our optimiza-

tion problem in that overcomplete pyramid space. Shown

here is a small input image (Fig. 4a) and 3-level pyra-

mids of simplified bilateral grids (Fig. 4b, left is fine-scale,

right is coarse-scale) and of permutohedral lattices (Fig. 4c)

where each grid/lattice is visualized by “slicing” a set of

random colors — each color corresponds to a variable in

our optimization. At higher scales of the pyramid, vertices

parametrize much larger areas (in a bilateral sense) of the

input image, which allows optimization to proceed more

quickly.

sampling the vertices at each level of the pyramid by a factor

of 2. This is analogous to constructing a Gaussian pyramid

of an image as was done in [3], with the only difference

here that we are using bilateral representations to construct

a “bilateral pyramid”. Grid and lattice-based pyramids can

be seen in Figure 4.

With our K splat matrices we can project a vector of

vertex depths v onto a pyramid of overlapping vertices:

P (v) = [SK . . . S2S1v, . . . , S2S1v, S1v,v] (32)

We can transpose this pyramid operation as well:

PT(w) = [ST
1 S

T
2 . . . ST

Kw, . . . , ST
1 S

T
2 w, ST

1 w,w] (33)

Of course, PT(w) and P (v) can be computed efficiently

from the bottom up by reusing information. As was the case

Figure 5: A summary of optimization traces for 20 4-

megapixel image pairs, normalized to the same range. The

line is the median normalized loss on each iteration, and the

shaded areas show the [25, 75] percentile range. Using our

multiscale optimization scheme, we almost halve the num-

ber of iterations of L-BFGS required for convergence.

in [3], we found it beneficial to normalize each variable in

our pyramid representation by the square root of its “mass”:

Q = diag (P (S1))
−1/2

(34)

We can now define a new optimization problem (that is, a

new loss function and its gradient) in our pyramid-space

in terms of the our previously defined bilateral-space loss

function and gradient:

pyr loss(w) = loss(QPT(w)) (35)

∇ pyr loss(w) = QP (∇loss(QPT(w))) (36)

Our final optimization procedure is to solve for a set of

pyramid-space depths:

w∗ = arg min
w

pyr loss(w) (37)

and then from that produce a per-pixel disparity map:

p∗ = STQPT(w∗) (38)

Because QP (·) and QPT(·) are both linear operations, this

multiscale optimization scheme can be thought of as a pre-

conditioner.

See Figure 5 for a demonstration of the improved con-

vergence resulting from using this multiscale optimization

scheme compared to single-scale optimization. Using this

multiscale preconditioner increases the time taken to evalu-

ate our loss function by about 10%, but causes convergence

to occur roughly twice as fast. In all of our results we ter-

minate optimization after 25 iterations of L-BFGS, which

Figure 5 suggests is sufficient.

6. Rendering

In the paper we use an algorithm for rendering

synthetically-defocused shallow-depth-of-field images to

produce our final output, and as an intermediate step in

benchmarking our own technique and the baseline stereo

techniques we compare against. Our rendering technique is

simple, as this is not the focus of our contribution. Still, a

somewhat accurate rendering algorithm is necessary for a

fair evaluation.

The rendering technique we use is straightforward: given

an image I , a disparity-map D, a target disparity that

we want to be in focus t, a desired magnitude of the

resulting shallow-depth-of-field effect m, and a function

disc blur(I, r) which applies a disc blur of radius r to im-

age I , our algorithm is as follows:

In ← ~0
Id ← ~0
for d = [min(D) : 1/m : max(D)] do

A← |D − d| ≤ 1/m
B ← I ×A
Ab ← disc blur(A,m|d− t|)
Bb ← disc blur(B,m|d− t|)
In ← In × (1−Ab) +Bb

Id ← Id × (1−Ab) +Ab

end for

I ← In/Id

Where × and / are element-wise multiplication and divi-

sion respectively. This algorithm sweeps from the “back” of

the disparity image to the “front”, and composites a series

of blurred images together with alpha matting such that the

blur applied to each layer is proportional to the difference

between the disparity at that layer and the target disparity

t. This technique is simple, reasonably fast, and appears

to work well in practice. It would be much cheaper to use

Gaussian blurs instead of disc blurs, but a Gaussian syn-

thetic blur lacks the distinctive “bokeh” of a disc blur.

When rendering synthetically defocused images, and

when computing our ground-truth shallow-depth-of-field

images by compositing images from our light field, we take

care to first linearize the input image(s), do the compositing

or blurring in that linear space, and un-linearize the out-

put averaged/blurred image. This linearization is both more

physically accurate, and produces much better looking im-

ages by preserving bright highlights.

7. Profiling

Because speed is an important aspect of our algorithm,

let us analyze the relative cost of each stage of our algo-

rithm. We ran the “grid” instance of our algorithm on a

large set of 4-megapixel stereo pairs and gathered statistics

on the time taken on each stage. Here are the means and

standard deviations of the runtimes of these stages:

Algorithm Component Time (ms)

Block-Interval Matching 179±7

Bilateral Grid Construction 27±7

Bilateral Pyramid Construction 7±3

Interval Splatting 83±49

L-BFGS Optimization 480±247

Solution Slicing 7±1

Domain Transform Post-Processing 64±9

Total 847±294

We see that time is mostly dominated by the time spent

doing L-BFGS optimization in bilateral-space, with our

block-matching / interval-finding procedure taking the next

most significant amount of time. Our optimization step has

an unusually high variance in its runtime, as the number of

vertices in our optimization problem is dependent on image

content.

8. Evaluation & Error Metrics

The most intuitive way to evaluate the performance of a

stereo algorithm for defocus is to visually inspect the ren-

derings produced using that algorithm. With that goal in

mind, we present a series of visualizations from our own

stereo dataset of 4-megapixel images with a 10mm baseline

between the cameras, shown in Figures 7-12. Close inspec-

tion of these results shows that our algorithm consistently

produces better looking defocused images than the baseline

stereo algorithms we evaluate against. This is reinforced by

our user study, as detailed in the main paper.

Though a qualitative user study is compelling, we would

also like a quantitative evaluation of the quality of our de-

focused renderings. Traditional stereo error metrics mea-

sure the per-pixel difference between an estimated disparity

map and some ground-truth disparity map. This is a reason-

able approach for evaluating a stereo algorithm in general

terms, but it has serious issues in the context of our spe-

cific defocus task. First, it requires that we have excellent

ground-truth disparity maps, which are very difficult to ob-

tain. Even the ground-truth depthmaps in state-of-the-art

stereo datasets [13] often have missing values near occlu-

sion edges, which are where noticeable defocus rendering

artifacts tend to occur. Second, evaluating errors in dispar-

ity as a proxy for errors in defocus quality presupposes the

assumption that good defocused images can be produced

by rendering images according to disparity maps, which is

precisely one of the claims that we wish to validate. Third,

some mistakes that would be heavily penalized by tradi-

tional stereo error metrics produce no noticeable change in

defocus quality, while other mistakes that would incur very

little error by traditional error metrics may produce egre-

gious artifacts in a defocused rendering. To this end, we

introduce a benchmark in which we attempt to directly mea-

sure the quality of the rendered defocused images produced

by a stereo algorithm, rather than measuring only disparity

map quality.

For our benchmark we will recover a depth map from a

stereo pair, render a set of images (a focal stack) using an

image from that stereo pair and the recovered depth, and

compare those renderings to “true” shallow-depth-of-field

images generated from a light field. Such an end-to-end de-

focus evaluation does not require ground-truth depth maps,

but instead requires rectified stereo pairs alongside ground-

truth focal stacks. To accomplish this we use the Stanford

Light Field Archive [2], which contains 12 calibrated light

fields of real-world scenes and objects. From one such light

field we can extract a rectified stereo pair and, by averag-

ing the subset of the light field where the camera position

lies within a disc, we can generate “ground-truth” shallow-

depth-of-field focal stacks. These images are not perfect,

as the light field may be angularly undersampled (only 7 of

the 12 light fields in the archive are sampled densely enough

for our purposes) but this dataset is otherwise well suited to

our task. Unlike a rendering produced by an image and a

depth map, an average image from a light field correctly

models occlusions and specularities just as a camera lens

does, and it is easy to guarantee that each focal stack is per-

fectly aligned to an image from each stereo pair. The sizes

of the images in this dataset vary, but are on average ∼1.1
megapixels. For each of our 7 well-sampled light fields we

generated a dense “ground truth” focal stack, and we se-

lected 4 evenly-spaced disparities at which renderings from

each stereo algorithm’s disparity map were produced, giv-

ing us 28 distinct test-set scenes in total.

When scrutinizing the errors in defocused renderings

some clear trends emerge. Some depth mistakes are com-

pletely unobservable in the defocused rendering. For ex-

ample, often the depth of a clear blue sky or of a flat black

background is completely mis-estimated by a stereo algo-

rithm, but this mistake is subtle or invisible in the defocused

image because a blurred flat patch looks identical to a non-

blurred flat patch. Sometimes we see errors in which there

is a foreground object occluding a background object of the

same color, for which nearly all stereo algorithms produce a

poorly localized depth discontinuity. Again, this is usually

unobservable in the output rendering, as depth discontinu-

ities are only visible in a defocused image if they coincide

with image discontinuities.

Interestingly, the requirements of the defocus task are

fundamentally forgiving to the shortcomings of stereo algo-

rithms. Some of the most common error cases found in the

disparity maps produced by stereo algorithms are invisible

in the defocused images. The places where errors matter

most are depth discontinuities which co-occur with image

discontinuities (a black object occluding a white object, for

example), which are exactly where a stereo algorithm has

the most actionable information for estimating depth (pro-

vided the edge is not perfectly horizontal, and therefore

aligned with the baseline of the stereo rig). This insight

informs the design of our bilateral-space stereo algorithm,

and it also informs our choice of error metric.

The most offensive errors in defocused renderings tend

to occur at highly textured occlusion boundaries in which

the depth map does not tightly follow the input image. This

causes textured regions to be split into in-focus and out-of-

focus regions, and produces sharp edges which are neither

present in the input image nor in the “ground-truth” defo-

cused image. The most egregious errors tend to be image

patches which, rather than failing to resemble “the” ground-

truth image, fail to resemble any image in the ground truth

“focal stack” of the scene. With this in mind, we will use

a set of error metrics in which, for every part of the image,

we compare the rendered image to all possible defocused

images which may have come from the ground-truth light

field. This makes us insensitive to subtle errors which hu-

mans tend not to notice (i.e., the interior of an object being

slightly blurrier than it should be due to a mis-estimated dis-

parity of the entire interior) but highlights noticeable errors

(a sharp, jagged edge where there should be a smooth edge

or no edge at all). For a visualization of the motivation for

our error metric, see Figure 13. This approach of measur-

ing error with respect to a ground-truth focal stack instead

of a ground-truth image has the additional benefit that no

ground-truth disparity is required for evaluation — though

it does require a well-sampled light field.

We will build our focal-stack error metrics on top of four

common image error metrics. Given two images, we will

measure their per-pixel difference with the absolute devia-

tion of individual pixel values (“pixel”), the gradient magni-

tude of each pixel (“grad”), the average absolute deviation

of the 8 × 8 patch centered around each pixel (“patch”),

and DSSIM [14]. Assuming an output rendering R and a

ground-truth focal stack S where Sk is the k’th image in the

focal stack, we will take the per-pixel minimum of each er-

ror metric across the entire focal stack, producing one final

error image for each metric. Though we take the minimum

independently for each pixel, because three of our four error

metrics are computed over a region, the selection of which

layer to draw the minimum value from tends to be spatially

smooth. To formalize our per-pixel error images:

min pixel(x, y) =min
k
|R(x, y)−∇Sk(x, y)|

min patch(x, y) =min
k

boxfilt(|R(x, y)− Sk(x, y)|, 8)

min grad(x, y) =min
k
|‖∇R‖(x, y)− ‖∇Sk‖(x, y)|

min dssim(x, y) =min
k

DSSIM(R,Sk)(x, y) (39)

For color images, the error metrics are assumed to be

summed before the min operator, except for DSSIM which

we compute only with luma. The image gradient magni-

tude ‖∇·‖ is computed with the technique of [3]. We use

standard SSIM parameters: k = [0.01, 0.03], σ = 1.5.

Now that we have these per-pixel error images, we must

reduce each metric’s image down to a single number. We

found that taking the average error across all pixels did not

reflect the perceptual quality of an image; most viewers (es-

pecially trained photographers) tend to dislike a rendering

with a single severe error much more than a rendering with

several inconspicuous errors. We therefore report the max-

imum error (the∞-norm) at any pixel in each error image,

and because the maximum is a sensitive error metric we also

report the 4-norm. The 4-norm and the∞-norm both penal-

ize a small number of severe errors much more heavily than

a large number of small errors. To formalize:

pixel4 =

(

∑

x,y

min pixel(x, y)4

)1/4

(40)

pixel∞ =max
x,y

min pixel(x, y) (41)

patch4, patch∞, grad4, grad∞, dssim4, and dssim∞ are

defined similarly. Given these error metrics for each image,

we compute the geometric mean of each error metric to pro-

duce one average error metric. When reporting performance

across the entire dataset, we report the geometric mean of

each error metric, including the average, across each image

age. The geometric mean is used instead of the arithmetic

mean because it is invariant to the varying scale of each er-

ror metric, invariant to being dominated by a particularly

challenging image, and associative.

9. Middlebury Evaluation

Though it is not our goal to produce a general-purpose

stereo algorithm, we would be remiss to not include an eval-

uation against the Middlebury stereo dataset. Our technique

performs poorly on the dataset, as the Middlebury error

metrics (the percentage of pixels which are more than ǫ dis-

parity values away from the ground-truth disparity, where

ǫ is usually 1 or 2) heavily penalizes the kind of errors our

algorithm readily make, such as systematically under- or

over-estimating the disparity of flat textureless regions. The

Middlebury error metric is also fairly insensitive to the sorts

of errors that we care about most: failing to follow image

edges at occlusion boundaries, where errors in disparity can

result in dramatic rendering errors. Our performance on V2

of the Middlebury stereo dataset [12] is shown in Table 1.

Included for comparison in that table is the performance of

one of our baseline algorithms, taken from the Middlebury

evaluation page. We visualize our performance relative to

that baseline more closely in Figure 6.

We include this comparison despite the fact that it is un-

favorable towards our algorithm, because it highlights an

important aspect of our contribution. We have previously

shown that our technique does better at the “defocus” task

(a) Ground Truth (b) Our Model (c) SGM [7]

(d) Our Model (e) SGM [7]

Figure 6: Our model compared with a baseline stereo algo-

rithm on an image from the Middlebury dataset. On the top

we show disparity rendered on top of a grayscale version

of the input image, and on the bottom we show the signed

error of each disparity map from the ground-truth. Our tech-

nique tends to produce biased disparities on the interiors of

objects, though we closely follow object edges. Other al-

gorithms tend to be accurate on the interiors of objects but

inaccurate near edges, as this sort of behavior is favored by

the Middlebury error metrics.

than the baseline algorithms that are conventionally thought

of as the state-of-the-art. Similarly, we have shown that our

algorithm performs worse than these other algorithms at the

more conventional stereo task. This suggests that the goals

of these two tasks are different — perhaps even contradic-

tory. This finding reinforces the approach taken in this pa-

per for the defocus task: that the target use-case of a stereo

algorithm should be the primary driving force behind the

choice of evaluation benchmark. It also suggests that the

most useful stereo algorithm for a specific task may not be

what is conventionally regarded as the state-of-the-art, de-

pending on the nature of that task.

Error Threshold = 1

Method
Tsukuba Venus Teddy Cones

nonocc all disc nonocc all disc nonocc all disc nonocc all disc

SGM [7] 3.26 3.96 12.8 1.00 1.57 11.3 6.02 12.2 16.3 3.06 9.75 8.90

Ours (grid) 19.4 20.3 62.4 21.9 23.0 50.0 26.8 33.0 53.5 26.9 32.0 49.6

Error Threshold = 2

Method
Tsukuba Venus Teddy Cones

nonocc all disc nonocc all disc nonocc all disc nonocc all disc

SGM [7] 2.01 2.52 9.14 0.36 0.68 4.19 3.46 6.55 9.26 2.38 8.15 7.00

Ours (grid) 6.36 6.76 127.9 6.59 7.34 29.4 12.6 19.1 30.3 14.8 19.5 32.8

Table 1: The performance of our algorithm on the V2 Mid-

dlebury stereo dataset [12], shown with one of our baseline

algorithms for comparison. Our algorithm does poorly at

this benchmark, as it favors very different kinds of errors

than our defocus benchmark.

References

[1] A. Adams, J. Baek, and M. A. Davis. Fast high-dimensional

filtering using the permutohedral lattice. Eurographics,

2010.

[2] A. Adams, V. Vaish, , B. Wilburn, N. Joshi, M. Levoy,

and Others. The stanford light field archive. http://

lightfield.stanford.edu/index.html.

[3] J. T. Barron and J. Malik. Shape, illumination, and re-

flectance from shading. Technical Report UCB/EECS-2013-

117, EECS, UC Berkeley, May 2013.

[4] S. Birchfield and C. Tomasi. Depth discontinuities by pixel-

to-pixel stereo. IJCV, 1999.

[5] J. Chen, S. Paris, and F. Durand. Real-time edge-aware im-

age processing with the bilateral grid. SIGGRAPH, 2007.

[6] A. Geiger, M. Roser, and R. Urtasun. Efficient large-scale

stereo matching. ACCV, 2010.

[7] H. Hirschmüller. Accurate and efficient stereo processing by

semi-global matching and mutual information. CVPR, 2005.

[8] P. Knight, D. Ruiz, and B. Uar. A Symmetry Preserving

Algorithm for Matrix Scaling. SIAM. J. Matrix Anal. & Appl,

2014.

[9] P. Milanfar. Symmetrizing smoothing filters. SIAM J. Imag-

ing Sci., 2013.

[10] J. Ragan-Kelley, A. Adams, S. Paris, M. Levoy, S. Amaras-

inghe, and F. Durand. Decoupling algorithms from schedules

for easy optimization of image processing pipelines. SIG-

GRAPH, 2012.

[11] C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and

M. Gelautz. Fast cost-volume filtering for visual correspon-

dence and beyond. CVPR, 2011.

[12] D. Scharstein and R. Szeliski. High-accuracy stereo depth

maps using structured light. CVPR, 2003.

[13] S. N. Sinha, D. Scharstein, and R. Szeliski. Efficient high-

resolution stereo matching using local plane sweeps. CVPR,

2014.

[14] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli.

Image quality assessment: From error visibility to structural

similarity. TIP, 2004.

[15] K. Yamaguchi, D. A. McAllester, and R. Urtasun. Efficient

joint segmentation, occlusion labeling, stereo and flow esti-

mation. ECCV, 2014.

(a) A stereo pair with cropped subregions of the right image

(b) Ours (grid) + DT

(c) SGM [7]

(d) SPS-StFl [15]

(e) LIBELAS [6]

(f) CostFilter [11]

Figure 7: Given a 4-megapixel stereo pair, we evaluate a set

of stereo algorithms on that pair, produce disparity maps,

and with those render synthetically defocused images. Our

technique tends to produce more natural and less objection-

able renderings than others. The cropped tiles shown here

are the same images that were used in our user study.

(a) A stereo pair with cropped subregions of the right image

(b) Ours (grid) + DT

(c) SGM [7]

(d) SPS-StFl [15]

(e) LIBELAS [6]

(f) CostFilter [11]

Figure 8: More results in the same format as Figure 7.

(a) True image (b) Our rendering (c) SPS-StFl’s rendering [15]

(d) Our disparity (e) Ours, DSSIM = 0.0057 (f) SPS-StFl, DSSIM = 0.0042

(g) SPS-StFl disparity (h) Ours, dssim4
= 0.00689 (i) SPS-StFl, dssim4

= 0.0486

Figure 13: A demonstration of the shortcomings of conventional error metrics for our task. In Fig. 13a we have a ground-

truth shallow-depth-of-field image from our light field dataset. By looking at the recovered disparity maps in Fig. 13d and

Fig. 13g we see that our algorithm’s disparity, though very smooth and well-aligned to image edges, is incorrect at the

ground-plane and the background. But these mistakes occur at flat image regions, and are therefore not visible in our output

rendering in Fig. 13b, demonstrating our claim that not all disparity errors produce rendering errors. The baseline depth is

often more accurate than ours but makes crucial errors at occlusion edges, thereby causing the conspicuous rendering artifacts

in Fig. 13c. As can be seen in the zoomed region, both renderings are different from the ground-truth image, but our error

is inconspicuous while the baseline error is very noticeable. A traditional error metric such as DSSIM does not reflect this,

and instead reports large errors throughout both renderings, most of which are inoffensive or difficult to see. Though DSSIM

is large at the conspicuous artifact in the baseline rendering, the mean DSSIM reported here is swamped by the error signal

at the other parts of the image, which (erroneously, in our judgement) reports that the baseline rendering has less error than

our algorithm’s rendering. This is why we introduce our own error metrics (such as dssim4) which work by taking the per-

pixel minimum error with respect to a ground-truth focal stack instead of a single ground-truth image, and then computing a

p-norm over the entire error image where p is large, which penalizes egregious errors more than small errors. As can be seen

in Fig. 13h and Fig. 13h, this new error metric penalizes noticeable rendering artifacts more than inconspicuous ones. This

error may seem like a corner-case, but in real-world scenes with heavy occlusion, errors like this are common.

(a) A stereo pair with cropped subregions of the right image

(b) Ours (grid) + DT

(c) SGM [7]

(d) SPS-StFl [15]

(e) LIBELAS [6]

(f) CostFilter [11]

Figure 9: More results in the same format as Figure 7.

(a) A stereo pair with cropped subregions of the right image

(b) Ours (grid) + DT

(c) SGM [7]

(d) SPS-StFl [15]

(e) LIBELAS [6]

(f) CostFilter [11]

Figure 10: More results in the same format as Figure 7.

(a) A stereo pair with cropped subregions of the right image

(b) Ours (grid) + DT

(c) SGM [7]

(d) SPS-StFl [15]

(e) LIBELAS [6]

(f) CostFilter [11]

Figure 11: More results in the same format as Figure 7.

(a) A stereo pair with cropped subregions of the right image

(b) Ours (grid) + DT

(c) SGM [7]

(d) SPS-StFl [15]

(e) LIBELAS [6]

(f) CostFilter [11]

Figure 12: More results in the same format as Figure 7.

(a) light field (b) true defocus (c) stereo pair

input ground truth Ours LIBELAS

SGM LPS SPS-StFl SAD-lattice

Figure 14: In Fig. 14a we show the constituent images of

one scene from the light field dataset. The images that

we average together to produce our “ground truth” shallow-

depth-of-field image (Fig. 14b) are circled in magenta, and

the two images we took to form our stereo pair (Fig. 14c,

visualized as a red-blue anaglyph) are circled in green. The

following figures show a cropped region of one input image,

the ground-truth refocused rendering, and the output defo-

cused renderings produced with different stereo algorithms.

These images were automatically cropped to the location

where the renderings disagreed the most (the window with

the maximum variance across the gradients-magnitudes of

the renderings). Our output tends to look natural and simi-

lar to the ground-truth, while others tend to have false edges

and artifacts.

(a) light field (b) true defocus (c) stereo pair

input ground truth Ours LIBELAS

SGM LPS SPS-StFl SAD-lattice

Figure 15: More results from our light field dataset, in the

same format as Figure 14

(a) light field

(b) true defocus (c) stereo pair

input ground truth Ours LIBELAS

SGM LPS SPS-StFl SAD-lattice

Figure 16: More results from our light field dataset, in the

same format as Figure 14

