Beyond Mahalanobis Metric: Cayley-Klein Metric Learning
Supplementary Material

Yanhong Bi, Bin Fan, Fuchao Wu
Institute of Automation, Chinese Academy of Sciences
Beijing, 100190, China

{yanhong.bi, bfan, fcwul@nlpr.ia.ac.cn

In this supplementary material, we first give the proofs of
the three propositions given in our paper, then show more
experimental results of similarity search on the OSR and
PubFig datasets.

1. Proofs of the propositions

Proposition 1: Given two points x,y € R"(B"), let z,
and z_ be the points at which the straight line determined by
x and y intersects the quadric surface Q = {z|y(z,z) = 0},
then:

k
p(X, y) = 5 |10gT(XY7Z+Z—)| (1)

where r(xy,z;z_) is the cross-ratio of this quadruple of
points {X,y,zy,z_}.

Proof. Letz = sx + (1 — s)y, (s € R) be the line de-
termined by x and y, then the two intersections of z and ()
satisfy:

P(sx+ (1 —s)y,sx+(1—9)y)=0 2)

According to definition, v is the bilinear form of matrix W,
then we have

Y(sx+ (1 —s)y,sx + (1 — s)y)

= (sx" + (1= s)y", 1)@(8" - S>y>

— 2(x7, 1)@(?) +2s(1 — $) (&7, MI(D

+(1- S)Q(yT,n\p(D

= s"P(x,%) + 25(1 = s)¥(x,y) + (1 = 5)*0(y, Y)(3)

Hence, two solutions s of Eq. (2) satisfy:

st~y £ VPR(xy) — 9(xx) - P(y.y)
Y(x,X)

l—si

“4)
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Accordingly, the two intersections are:
Z4 = S4X + (1 — S:t)y (5)

Note that in elliptic geometry space, z. is a pair of conju-
gate complex points.

The cross-ratio of the quadruple of points {x,y,z,,z_}
is:

S_ Sy

r(xy,z12_) = T —

_ P(xy) + VY%, ) — (% X) - U(y, y)
B(x,y) — VO2(x,y) — ¥(x,%) - ¥y, y()6)
Therefore, we obtain:
p(x,y) = g llog r(xy, z+z_)| 0

Proposition 2: For any G € G(¥), there exists a (n+1)-
dimensional antisymmetric matrix W satisfying:

G=(V+W) H¥U-W) (7)
Proof. Based on the definition of G(W), it holds
G TUG™ =0, je. U = G'UG. Since G(¥) is a lin-
ear matrix group, for any G € G(VU), its Cayley transform
can be represented as:
B=(I1-G)(I+G)™* (8)
Similarly, G is the Cayley transform of B:
G=(I-B)(I+B)! )
Then:
U=>O+B)"T0-B)T¥I-B)(I+B)"! (10)
Or, equivalently:

I+B)TYI1+B)=1-B)V¥I-B) (1)



Thus, we obtain BTV + UB = 0, which means VB is an
antisymmetric matrix. That is, there exists W € A with
UB =W, thus B = ¥~ 'W, and
G=I-9v'W)T+ T 'w)!
=I+0'W)" {1 - T 'W) (12)
=(T+W) 1 (T -W)
That is
G=(T+W) H¥-W) O

Proposition 3: The Cayley-Klein metrics dg(x;,X;),
dp (X4, X;) and Mahalanobis metric dx; (x;, X;) have the fol-
lowing relationship:

kgriloc dp(xi,X;) = ds(x;,X;) = kETOO dm (xi,%x;) (13)

Proof. First we prove

kggloc dp(Xi, Xj) = ds (X, X;)

Since GT is a positive definite matrix, we have:

+2 + +
UXin S O—XiXi ! JXij (14)

According to the definition of dg(x;,X;), we have:

+ .+ 42
dg(Xi, X)) ! 1 Txix; +Z\/U"'i‘i Ox;x; — Oxix;
=00 — _og

k 2 v o+ +2
Ox;x; — U\/Ox;x; " Ox;x; — Ox;x;
2

v oy o+ +2

1 1 Ox;x; +Z\/O—Xixi C0x;x; — Oxx;
2 -
Ox;x; " 0x,x;
T o AT +2
1 | Ox;x; + Z\/O-Xixi T Ox;x; T Ox;x;
= - log

According to Euler formula:

e +
cos (dE(X];’XJ)> = Ty (16)

sin (dE(’Z’Xj)> _

Letx; = x; —mand X; = X;

sin (dE (Xk X ))

(i?Zii +k2) - (i;FZf(j + k2) — (i?z,}j + k2)2
(XI5%; + k2) - (XL £%; + k2)

+ +
gXiXi : ij X

2
O, - U;‘txj - U;rixj
T T a7

O’X,;X,i : ij X

— m, then

(18)

For the squared Mahalanobis distance, we can rewrite it as:
43 (xi, %) = (x; — x;) T2 (x; — x;)
= (% — %) 2(%i - %) (19)
=X, IX; +X] L%, — 2%, UX;

Combining Eq. (19) and Eq. (18), we have:

(1)

B2 d3(xi,x;) + (XI5% %) 3%; - (K]%,)?)
T~ T~
(X; Xx; + k2) - (X XX + k?)

(20)
then

sin (L (’:’Xj) )

lim
dx (Xi,X5)
k

k——+o0

KT 5%, %7 5%, — (X7 5%;)2
. 1+ ERRICED)
= lim =1

k—+oo (1 n ifkgil> ) (1 n iffj;)

21
Therefore, we obtain

kglfoo dp (X, X;) = ds(X;, X;)

For the hyperbolic Mahalanobis metric, in a similar way we
can obtain:

sinh (dH ();“ X)) )

K2 dd(xi,x;) — (X1 5% - X3, - (K] %,)?)

(%] B%; — k2) - (X] 2%, — k2)

(22)
where sinh(z) is a hyperbolic sine function as:
sinh(z) = % (23)
Thus
sinh (7d”(}:”x1))
L = e
KT 5%, %7 1%, — (37 %;)2
— lim - k2-dg (xi %) 1
= T vw Iy \
k—+4o00 (1 _ X?]g&:) . (1 _ Xj]i".])
(24)
from which we can obtain
lim dy(x;,%x;) = dn(x;,X;) O

k—+oco



2. Experimental results of similarity search

Figure 1 presents recognition results of CK-MMC and
MMC on OSR and PubFig. We show for each query the 5
most similar images using the metric learned by CK-MMC
(first row) and MMC (second row) respectively.
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Figure 1. Similarity search results of CK-MMC and MMC on OSR
and Pubfig. For each query from the OSR and PubFig datasets, we
return the 5 most nearest neighbors according to the metric learned
by CK-MMC (first row) and MMC (second row) respectively. The
images with the same class of query image are marked in blue, and
those from different classes are marked in red.

Figure 2 shows recognition results of CK-LMNN (first
row) and LMNN (second row) on OSR and PubFig.

It is clear that our methods (CK-MMC and CK-LMNN)
could return more semantically relevant images. Therefore,
Cayley-Klein metric is more reliable than Mahalanobis met-
ric.
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(b) PubFig
Figure 2. Similarity search results of CK-LMNN and LMNN on
OSR and Pubfig. For each query from the OSR and PubFig
datasets, we return the 5 most nearest neighbors according to the
metric learned by CK-LMNN (first row) and LMNN (second row)
respectively. The images with the same class of query image are
marked in blue, and those from different classes are marked in red.



