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1 Stochastic Optimization

This section provides algorithmic details of the Stochastic Averaged Gradient Descent

(SAGD) optimization method used for MAP estimation. See the original SAGD paper

[1] for details. Consider the objective function specified in Equation (6), rewritten as a

sum of functions over subsets of the data:

f(V) = − log p(V)−

K
∑

i=1

log p(Ĩi|θi, Ṽ)

=

K
∑

i=1

[

−
1

K
log p(V)− log p(Ĩi|θi, Ṽ)

]

=

K
∑

i=1

fi(V)

At each iteration τ , SAGD computes the update given by

Vτ+1 = Vτ −
ǫ

L

K
∑

j=1

[

dVτ
j −

1

K

∂

∂V
log p(V)

]

where dVτ
k is defined according to Equation (8). In practice, the sum in the above up-

date equation is not computed at each iteration, but rather a running total is maintained

and updated as follows:

ĝτ =

K
∑

k=1

dVτ
k

ĝτ+1 = ĝτ − dV
τ
kτ

+ gkτ
(Vτ )
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The SAGD algorithm requires a Lipschitz constant L which is not generally know.

Instead it is estimated using a line search algorithm where an initial value of L is in-

creased until the instantiated Lipschitz condition f(V) − f(V − L−1dV) < ‖dV‖2

2L is

met. The line search for the Lipschitz constant L is only performed once every 20 itera-

tions. Note that a more sophisticated line search could be performed if desired. A good

initial value of L is found using a bisection search where the upper bound is the small-

est L found so far to satisfy the condition and the lower bound is the largest L found

so far which fails the condition. In between line searches, L is gradually decreased to

try to take larger steps. The entire SAGD algorithm is provided in Algorithm (1).

Algorithm 1 SAGD

Initialize V and L

Initialize ĝ← 0
Initialize dVk ← 0 for all k = 1..K
for τ = 1..τmax do

Select data subset kτ
Compute objective gradient gkτ

(V)
ĝ← ĝ − dVkτ

+ gkτ
(V)

dVkτ
← gkτ

(V)
V ← V − ǫ

L

[

ĝ − ∂
∂V log p(V)

]

if mod(τ ,20) == 0 then

Perform line search

while fkτ
(V)− fkτ

(V − L−1dVkτ
) <

‖dVkτ
‖2

2L do

L← 2L
end while

else

L← K
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end if

end for

2 Importance Sampling

Importance Sampling is a key part of the proposed reconstruction method for Cryo-

EM and provides large speedups during optimization. We use importance sampling to

efficiently compute the discrete sum in Equation (4). Note that importance sampling

is applied independently for each image in the dataset, since the orientations and shifts

which correspond to important terms in the discrete sum can be different for each

image.

In practice, we split the outer sum in Equation (4) into a double summation, one

over orientations on the sphere and one over in-plane rotations of images and pro-

jections. We then compute each of the three sums (over shift, in-plane rotation, and

orientation) with and independent importance sampler. This is equivalent to comput-

ing the full sum in Equation (4) using a single importance sampler with an importance

2



distribution that is factored into three parts, one for each of shift, in-plane rotation, and

orientation. This factoring is necessary, as the memory requirements of storing a fully

joint importance distribution for each image in the dataset would become infeasible for

high-resolution reconstructions.

For each of the three importance samplers, the importance distribution at each it-

eration is constructed according to Equation (14). At the first iteration during which

a particular image is seen, the importance distribution is simply uniform, and in fact

we explicitly sample every point once. The φ values resulting from this computation

are stored. At the next iteration during which the same image is seen, these φ values

are used in Equation (14) to construct a non-uniform importance distribution which is

then sampled from. We use a number of samples proportional to the effective sample

size of the importance distribution, so the number of samples used naturally decreases

as the importance distribution becomes more peaked, leading to large speedups at late

iterations during optimization.

Algorithm 2 Importance Sampling

Given φi for i ∈ I from previous iteration

for j ∈ 1..J do

for i ∈ I do

Compute Ki,j

end for

end for

φ̂j ←
∑

i∈I
φ
1/T
i Ki,j ∀j ∈ 1..J

Z ←
∑

j φ̂j

qj ← (1− α)Z−1φ̂j + αψj ∀j ∈ 1..J

s←
(

∑

j q
2
j

)−1

N ← s0s

I← ∅

for k ∈ 1..N do

i← sample from q

insert i into I

end for

Use I to compute φi for next iteration

In Equation (14), the previous φ values are not directly used, but rather they are

annealed by a temperature parameter and then smoothed by a kernel matrix. Both of

these steps serve to guard against importance distributions which are too peaked around

large φ values, which would inhibit the importance sampler from exploring the domain.

The kernel matrix also serves the purpose of allowing use of φ values from a previous

iteration even if the resolution of quadrature points being used has increased at the

current iteration. The Von Mises-Fisher kernel is used for orientations and in-plane
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rotations, while a Gaussian kernel is used for shift:

KV (di, dj ;κV ) ∝ exp(κV d
T
i dj)

KG(ti, tj ;κG) ∝ exp(−κG‖ti − tj‖
2)

where κV and κG are precision parameters for each kernel which are set based on the

resolution of the quadrature scheme used at the previous φ values, di and dj are the

quadrature directions (in S2 for particle orientation and S1 for in-plane rotation, and ti
and tj are the quadrature shift values (in R

2).

The algorithm for constructing an importance distribution and sampling from it are

given in Algorithm (2). The sampled values are then used to compute (12). Note that

some quadrature points can end up being sampled multiple times, this is detected and

the value reused to reduce computation.

3 Error Measures

Because ground-truth is rarely available for Cryo-EM, measuring accuracy is often dif-

ficult. Traditionally, the field has used the Fourier Shell Correlation (FSC) to measure

the resolution of a solved structure. The so-called gold-standard FSC works by splitting

the dataset in half, estimating two densities separately and the computing the normal-

ized correlation in Fourier space as a function of frequency. This curve would then be

thresholded to provide an estimate of accuracy. However, we note that this measure

is actually estimating the variance of the estimator, not the accuracy of the density it

has produced. Further it is only theoretically justifiable when the estimator is unbiased,

which is not true of the method proposed here or with other likelihood-based Bayesian

methods such as RELION.

Instead, we introduce a novel metric based on reconstruction error of a held test

set. To quantify the ability of marginal likelihood methods, such as ours, to model and

explain the observed data we introduce the Expected Mean Squared Error

E2(I|θ,V) ≡ ER,t|I,θ,V

[

‖I −CθStPRV‖
2
]

(1)

to be the expectation of the squared error between the image and its reconstruction un-

der the image formation model. Note that the expectation is conditioned on the current

density and the CTF parameters and is taken over the unknown pose and translation,

R and t. After switching to Fourier space and with some manipulation this formula

becomes

E2(I|θ,V) = Z−1

∫

R2

∫

SO(3)

‖Ĩ − C̃θS̃tP̃RṼ‖
2p(Ĩ|θ,R, t, Ṽ)p(R)p(t)dRdt (2)

where the

Z = p(Ĩ|θ, Ṽ) (3)

=

∫

R2

∫

SO(3)

p(Ĩ|θ,R, t, Ṽ)p(R)p(t)dRdt (4)

4



is a normalization constant. To compute this efficiently, we can use the same impor-

tance sampling technique described in the main paper to approximate it as

Ê2(I|θ,V) = Ẑ−1
∑

j∈IR

wR

j

NRq
R

j

(

∑

ℓ∈It

wt

ℓ

Ntq
t

ℓ

pj,ℓ‖Ĩ − C̃θS̃tP̃RṼ‖
2

)

(5)

where

Ẑ =
∑

j∈IR

wR

j

NRq
R

j

(

∑

ℓ∈It

wt

ℓ

Ntq
t

ℓ

pj,ℓ

)

(6)

is the approximation of the normalization constant. The above quantities can be read-

ily computed along with the main likelihood computation using the same importance

sampling scheme described above.

We compute the average value of Ê2(I|θ,V) on a held out set of test images whose

gradients are never used. To normalize for different datasets we report the Relative

Root Expected Mean Squared Error (RREMSE) as

√

1

σ2Ntest

∑

I

Ê2(I|θ,V) (7)

where the sum is taken over the test set which has Ntest images and σ2 is the noise

variance of the dataset. Values near 1 indicate that the data is being well explained.
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