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1. Conv-net details
In the experiments of Sections 3.2 and 3.3, we use ac-

tivations from all convolutional and fully-connected layers
of the Alexnet architecture. In this case without loss of gen-
erality, we decouple the output layer in two pieces: (i) a
fully-connected layer performing a linear combination of fc-
7 outputs, called fc-8, and (ii) a soft-max operation which
uses fc-8 as inputs and produces the posteriors associated
with each object class. On the other hand, we only use
activations from all convolutional layers, fc-6 and fc-7 of
Alexnet architecture for our ablation study (Section 3.4).
The underlying reason is to avoid the undesirable effect of
directly degrading the classification performance due to the
ablation of nodes from the output layer.

2. Ablation Study: Complementary Results
Ablating Individual Attributes: In Section 3.4, we ab-
lated ACNs corresponding to all 25 attributes by taking
the union of their sparse supports. In that experiment, we
see that ablating ACNs significantly degrades overall object
recognition performance. However, we expect a similar be-
havior when ablating ACNs corresponding to individual at-
tributes separately. We report these results for 4 attributes
in Figure 1. As would be expected, the drop-off in top-5
accuracy is less drastic than that shown in Figure 8 of the
submission. This is due to the fact that the percentage of
ablated nodes is much less. Figure 1 shows this degrada-
tion for the ILSVRC-12 validation set, when 4 attributes
(‘black’, ‘furry’, ‘rectangular’, and ‘spotted’) are ablated
from the conv-net separately. These attributes represent a
sample attribute from the four attribute groups that were de-
fined for the ImageNet-Attribute dataset.

Ablating Sets of Attributes: Figure 2 shows more quali-
tative results of our ablation study (Figure 9 in the submis-
sion) and the impact of ACNs on object classification. We
observe that the conv-net seems to make use of attributes
from the image context to recognize some objects, such
as ‘Ping-Pong Ball’ or ‘Puck’ associated with the ‘Green,
Brown, Wooden’ attribute set or ‘Valley’ associated with
‘Black, Brown, Furry’.
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Figure 1. Plots top-5 accuracy on the ILSVRC-2012 validation set of the original Alexnet model (green) and its two surgically damaged
variants. One variant (red) ablates the ACNs of one attributes (at each µ value), while the other (blue) ablates an equal number of randomly
sampled nodes. The ablated attribute is on top of each graph. Both variants show a steep drop-off as µ increases; however, the difference
in accuracy between the two is significant. This suggests that ACNs encode important information used by the conv-net for recognition
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Figure 2. Shows object classes that are the most (red box) and least (green box) affected by ablating ACNs corresponding to five example
attribute groups. The mean average precision degradation of each of these classes is reported below its representative image. The most
affected classes tend to contain the ablated attributes, while the least affected ones do not.


