
Taking a Deeper Look at Pedestrians

Supplementary material

Jan Hosang Mohamed Omran Rodrigo Benenson Bernt Schiele

Max Planck Institute for Informatics

Saarbrücken, Germany

firstname.lastname@mpi-inf.mpg.de

1. CifarNet training, the devil is in the details

Training neural networks is sensitive to a large number

of parameters, including the learning rate, how the network

weights are initialised, the type of regularisation applied to

the weights, and the training batch size. It is difficult to

isolate the effects of the individual parameters, and the best

parameters will largely depend on the specific setup. We

report here the parameters we used.

We train CifarNet via stochastic gradient descent (SGD)

with a learning rate of 0.005, a momentum of 0.9, and a

batch size of 128. After 60 epochs, we reduce the learning

rate by a factor of 0.1 and train for an additional 10 epochs.

Reducing the learning rate even further did not improve the

classification accuracy. The other learning rate policies we

explored yielded inferior performance (e.g. gradually redu-

cing the learning rate each training iteration). Careful tun-

ing of the learning rate while adjusting the batch size was

critical.

Other than the softmax classification loss, the training

loss includes a L2 regularisation of the network weights. In

the objective function, this regularization term has a weight

of 0.005 for all layers but the last one (softmax weights),

which receives weight 1. This parameter is referred in

Caffe as “weight decay”.

The network weights are initialised by drawing values

from a Gaussian distribution with standard deviation σ =

0.01, with the exception of the first layer, for which we set

σ = 0.0001.

2. Grid search around CifarNet

Table 1 shows the detection quality of different variants

of CifarNet obtained by changing the number and size of

the convolutional filters of each layer. See related section

4.3.1 of the main paper. Since different training rounds have

different random initial weights, we train four networks for

each parameter set and average the results. We report both

mean and standard deviation of the miss rate on our valida-

tion set.

We observe that using either too small or too large fil-

ter sizes throughout the network hurts quality. The network

width also seems to matter, a network too narrow or too

wide can negatively impact classification accuracy. All and

all the “middle-section” of the table shows only small fluc-

tuations in miss-rate (specially when considering the vari-

ance).

In addition to filter size and layer width, we also experi-

mented with different types of pooling layers (max-pooling

versus mean-pooling), see figure 2 of main paper. Other

than on the first layer, replacing mean-pooling with max-

pooling hurts performance.

The results of table 2 indicate that there is no set of para-

meters close to CifarNet with a clear advantage over the

default CifarNet parameters. When going too far from Ci-

farNet parameters, classification accuracy plunges.

3. Grid search for AlexNet

Table 2 presents the swipe of parameters used to con-

struct the “Best parameters” entries in table 8 of the main

paper. We vary the criterion to select negative samples and

the SVM regularization parameters. Defaults are paramet-

ers are IoU < 0.5, and C = 10−3.

Overall we notice that neither parameter is very sensitive

(1 ∼ 2 percent points fluctuations). When C is far from

optimal large degradation is observed (10 per cent points).

As seen in table 8 of the main paper the gap between default

and tuned parameters is rather small (1 ∼ 2 percent points).

4. Datasets statistics

In figure 1 we plot the height distribution for pedestrians

in Caltech and KITTI training sets. Although the datasets

are visually similar, the height distributions are somewhat

dissimilar (for reference ImageNet and Pascal distributions

are more look alike among each other).

It was shown in [1] that models trained in each dataset,

do not transfer well across each other (compared to models

trained on the smaller INRIA dataset).
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Sizes
# filters

16, 16, 16 32 , 32 , 64 32, 64, 32 64, 32, 32 32, 32, 32 64, 64, 64 64, 32, 16 Mean

3, 3, 3 48.4± 1.7 44.4± 1.0 43.6± 0.8 45.1± 1.1 45.2± 0.7 42.3± 1.3 46.6± 2.1 45.1

5 , 5 , 5 42.7± 4.2 41.1± 1.3 39.1± 1.0 38.9± 1.5 37.8± 1.6 38.3± 2.5 38.5± 1.3 39.5

7, 5, 3 43.3± 2.9 38.7± 2.4 38.6± 2.1 38.8± 0.9 40.2± 2.0 37.9± 1.7 39.7± 0.7 39.6

7, 5, 5 43.5± 2.5 40.2± 0.9 40.8± 2.6 38.4± 0.9 40.8± 1.5 40.0± 0.4 41.7± 2.5 40.8

7, 7, 5 43.5± 2.7 41.6± 3.0 43.3± 6.1 40.5± 2.9 39.8± 2.5 47.3± 2.5 41.6± 2.0 42.5

Mean 44.3 41.2 41.1 40.4 40.8 41.2 41.6

Table 1: Detection quality (MR%) as the number of filters per layer (columns) and filter sizes per layer (rows). CifarNet

parameters are highlighted in italic. (MR: log-average miss-rate on Caltech validation set).

neg

overlap

C
10−6 10−5.5 10−5 10−4.5 10−4 10−3.5 10−3 10−2.5 10−2

0.3 36.01% 33.62% 32.30% 32.22% 32.04% 32.42% 32.24% 32.26% 32.40%

0.4 36.01% 33.72% 32.43% 32.09% 32.16% 32.33% 32.23% 32.30% 32.20%

0.5 36.07% 33.90% 32.51% 32.03% 32.18% 32.53% 32.20% 32.28% 33.15%

0.6 36.50% 33.96% 32.43% 32.19% 32.24% 32.45% 32.29% 33.06% 34.61%

0.7 36.55% 34.32% 32.36% 32.05% 32.15% 32.55% 32.82% 33.83% 36.13%

(a) layer fc7

neg

overlap

C
10−6 10−5.5 10−5 10−4.5 10−4 10−3.5 10−3 10−2.5 10−2

0.3 37.16% 32.49% 32.01% 31.88% 32.03% 32.18% 32.50% 32.40% 32.48%

0.4 37.16% 32.54% 32.07% 31.89% 32.14% 31.92% 32.46% 32.51% 32.56%

0.5 37.41% 32.61% 32.17% 32.07% 32.04% 31.84% 32.57% 33.12% 33.18%

0.6 37.54% 32.68% 32.14% 32.12% 32.22% 31.90% 32.93% 34.02% 35.85%

0.7 38.06% 32.67% 32.10% 31.89% 32.23% 32.32% 33.92% 35.92% 38.72%

(b) layer fc6

neg

overlap

C
10−6 10−5.5 10−5 10−4.5 10−4 10−3.5 10−3 10−2.5 10−2

0.3 55.37% 36.77% 33.16% 32.75% 32.77% 33.29% 33.37% 34.28% 35.16%

0.4 55.89% 36.82% 33.17% 32.52% 32.82% 33.16% 32.79% 34.12% 35.42%

0.5 56.24% 37.09% 33.21% 32.65% 32.69% 33.14% 33.26% 34.95% 36.39%

0.6 56.68% 37.19% 33.40% 32.66% 32.83% 33.44% 34.17% 35.66% 38.28%

0.7 57.93% 37.60% 33.81% 32.85% 33.27% 34.23% 35.76% 38.98% 42.68%

(c) layer pool5

neg

overlap

C
10−6 10−5.5 10−5 10−4.5 10−4 10−3.5 10−3 10−2.5 10−2

0.3 82.29% 64.90% 48.26% 44.67% 44.83% 43.66% 42.71% 43.36% 45.48%

0.4 82.29% 65.06% 48.66% 44.69% 44.67% 43.06% 42.41% 42.74% 44.81%

0.5 82.22% 65.23% 48.87% 44.68% 44.34% 42.98% 42.57% 43.30% 44.98%

0.6 82.22% 65.30% 48.69% 44.89% 44.39% 43.63% 42.92% 44.27% 46.35%

0.7 82.39% 65.96% 50.47% 45.62% 45.32% 44.86% 44.84% 46.31% 50.13%

(d) layer conv4

Table 2: Detection quality (MR) as function of the maximal IoU threshold to consider a proposal as negative example and

the SVM regularization parameter C. (MR: log-average miss-rate on Caltech validation set)
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(a) Caltech Reasonable training set
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(b) KITTI training set

Figure 1: Histogram of pedestrian heights in different data-

sets.

5. Proposals statistics

In figures 2 and 3 we show statistics of different detectors

on the Caltech test set, including the ones we use as propos-

als in our experiments. These figures complement table 9 of

the main paper.

Our initial experiments indicated that it is important to

keep a low number of average proposals per image in or-

der to reduce the false positives rate (post re-scoring). This

is in contrast to common practice when using class-agnostic

proposal methods, where using more windows is considered

better because they provide higher recall [2]. We filter pro-

posals via a threshold on the detection score.

As can be seen in figure 2 a recall higher than 90% can be

achieved with only ∼3 proposals per image on average (for

Intersection-over-Union threshold above 0.5, the evaluation

criterion). The average number of proposals per image is

quite low because most frames of the Caltech test set do not

contain any pedestrian.

In figure 3 we show the number of false positives at dif-

ferent overlap levels with the ground truth annotations. The

bump around 0.5 IoU, most visible for SpatialPooling

and LDCF, is an artefact of the non-maximum suppression

method used by each method. Both these method obtain

high quality detection, thus they must assign (very) low-
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Figure 2: Recall of ground truth versus IoU threshold, for a

selection of detection methods. The curves are cumulative

distributions. The detections have been filtered by score to

reach ∼3 proposals per image on average (number indicated

in the legend).
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Figure 3: Distribution of overlap between false positives

and ground truth of those false positives that do overlap with

the ground truth. The curves are histogram with coarse IoU

bins. Number in the legend indicates the average number of

proposals per image (after filtering to reach ∼3).



scores to these false positives windows. To further improve

quality the re-scoring method must do the same.

When using a method for proposals one desires to have

high recall with high overlap with the ground truth (figure

2), as well has having false positives with low overlap with

the ground truth (figure 3). False positive proposals over-

lapping true pedestrians will have pieces of persons, which

might confuse the re-scoring classifier. Classifying fully

centred persons versus random background is assumed to

be easier task.

In table 9 of the main paper we see that AlexNet

reaches top detection quality by improving over LDCF,

SquaresChnFtrs, and Katamari.

6. Error analysis

In the error analysis in the paper, we mention that the

highest scoring false positives of our best models consist

of localization errors of the detection proposals, of the

AlexNet, but also of the ground truth. This suggests, that the

detector struggles to rank partial pedestrians low enough:

below low scoring, but well localized pedestrians. In this

section and in figure 4 we present an experiment, which

shows that fixing localization errors does not improve the

performance by more than 2% log-average miss-rate, and

thus most performance is lost by false detections on back-

ground.

Figure 4a shows the performance of our key results and

other published results on the Caltech test set. For each

of those pedestrian detectors we run the evaluation to de-

termine which detections are false positives and remove

those, which overlap with annotated pedestrians. For the

remaining detections we plot the performance, as shown in

figure 4b. This filtering step generously removes all de-

tections of partial pedestrians that are counted as mistakes

and only leaves false detections on background. All con-

sidered methods gain no more than 2% log-average miss-

rate, which means that the conclusion from looking at the

highest scoring false positives is wrong. Fixing localization

issues will not have a great impact for any of the detectors.

Instead all methods struggle to distinguish pedestrians from

background and this problem has to be addressed to achieve

bigger improvements under the current evaluation metric.
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(a) Regular detection performance.
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(b) Detection performance after removing all false positives that have any

overlap with annotated pedestrians.

Figure 4: Performance of our key results (thick lines) and

published methods on Caltech test set before and after re-

moval of false positives that touch annotated pedestrians.

Methods using optical flow are dashed.


