Supplementary Material: Generalized Deformable Spatial Pyramid: Geometry-Preserving Dense Correspondence Estimation

Junhwa Hur¹, Hwasup Lim^{1,2}, Changsoo Park¹, and Sang Chul Ahn^{1,2} ¹Center for Imaging Media Research, Robot & Media Institute, KIST, Seoul, Korea ²HCI & Robotics Dept., University of Science & Technology, Korea

{hurjunhwa, hslim, winspark, asc}@imrc.kist.re.kr

1. The message passing for the pairwise term V_{ij}^2

This section explains how to calculate a message to pass for the pairwise term V_{ij}^2 as we stated in Section 3.3 in the main paper. We successfully show how to simplify the message passing term for the V_{ij}^1 by reordering the term according to the dependencies on each variable, as in Eq. (7) in the main paper. Simplifying the message passing term for V_{ij}^2 follows the similar way of that for V_{ij}^1 , but details in the reorganized term become different as the variables are not identically combined as in V_{ij}^1 .

The pairwise term V_{ij}^2 calculates the state discrepancy between two nodes where *i* is a child node and *j* is its parent node:

$$V_{ij}^{2} = \alpha \left\| \mathbf{t}_{i} - \left((s_{j}R(r_{j}) \cdot \overrightarrow{\mathbf{o}_{j}\mathbf{o}_{i}} - \overrightarrow{\mathbf{o}_{j}\mathbf{o}_{i}}) + \mathbf{t}_{j} \right) \right\|_{1} \\ + \beta \left\| r_{j} - r_{i} \right\|_{1} + \gamma \left\| s_{j} - s_{i} \right\|_{1}.$$

If we let $\Delta_u(r_j, s_j) = (s_j R(r_j) \cdot \overrightarrow{\mathbf{o}_j \mathbf{o}_i} - \overrightarrow{\mathbf{o}_j \mathbf{o}_i}) \cdot \hat{u}$ and $\Delta_u(r_j, s_j) = (s_j R(r_j) \cdot \overrightarrow{\mathbf{o}_j \mathbf{o}_i} - \overrightarrow{\mathbf{o}_j \mathbf{o}_i}) \cdot \hat{v}$ in the above equation, we can derive a message from the node *i* to the node *j* in the similar way in Eq. (7) in our paper:

$$\begin{split} h(u_{j}, v_{j}, r_{j}, s_{j}) &= \min_{u_{i}, v_{i}, r_{i}, s_{i}} (\alpha f_{1} + \alpha f_{2} + \beta f_{3} + \gamma f_{4} + h) \\ &= \min_{u_{i}} \{ \alpha f_{1} + \min_{v_{i}} \{ \alpha f_{2} + \min_{r_{i}} [\beta f_{3} + \min_{s_{i}} (\gamma f_{4} + h)] \} \} \\ &\text{ where } f_{1} = \| u_{i} - (\Delta_{u}(r_{j}, s_{j}) + u_{j}) \|_{1}, \\ f_{2} &= \| v_{i} - (\Delta_{v}(r_{j}, s_{j}) + v_{j}) \|_{1}, \\ f_{3} &= \| r_{j} - r_{i} \|_{1}, f_{4} = \| s_{j} - s_{i} \|_{1}, \\ &\text{ and } h = h(u_{i}, v_{i}, r_{i}, s_{i}). \end{split}$$

The message from the node i to the node j can be generally represented as the second line in the above equation [1, 2], and we can reorder the equation according to the dependencies of each variable as in the third line of the equation.

Algorithm 1 The Distance Transform (DT) for computing messages with V_{ij}^2 in the four dimensional case (u_i, v_i, r_i, s_i)

Require: A message from a child node *i* to a parent node *j* before updating, The center coordinate o_i , o_j of node *i* and *j* respectively.

Ensure: A message from a child *i* to a parent *j* after updating 1: procedure MessageUpdating

2:	for u_i, v_i, r_i do // calculating $h(u_i, v_i, r_i, s_j)$
3:	1D DT for s_i
4:	end for
5:	for u_i, v_i, s_j do // calculating $h(u_i, v_i, r_j, s_j)$
6:	1D DT for r_i
7:	end for
8:	for u_i, r_j, s_j do // calculating $h(u_i, v_j, r_j, s_j)$
9:	1D DT for v_i with offset $-\Delta_v(r_j, s_j)$
0:	end for
1:	for v_j , r_j , s_j do // calculating $h(u_j, v_j, r_j, s_j)$
2:	1D DT for u_i with offset $-\Delta_u(r_j, s_j)$
3:	end for
4:	end procedure
_	

Then, the message can be easily calculated via a series of four distance transforms [1]. Note that minimizing for s_i and r_i is interchangeable, and also for u_i and v_i as well.

The Algorithm 1 above solves the series of four minimization problems using the 1D distance transform. The Fig. 1 represents how to conduct the 1D distance transform with the offset in the Algorithm 1.

2. Qualitative analysis of DAISY Filter Flow's results [3] on the non-rigid deformation pairs

As we stated in the experiment section in our main paper, we display the qualitative analysis of DAISY Filter Flow's results on the non-rigid deformation pairs in Fig. 2. The results indicate that the geometry of foreground objects is not

Figure 1: The visualization of 1D distance transform with the offset $\Delta.$

Figure 2: Qualitative analysis on the dense correspondence search results of DAISY Filter Flow [3].

preserved and the number of pixels which are transferred to the warping results is significantly reduced. The outcome implies that the majority of correspondences are not correctly estimated, even if the warping results look similar to their source images. The flow fields also validate these results; the flow fields of DFF [3] demonstrate significant irregularities overall, comparing to those of our model which show piecewise-smoothness.

3. The demonstration Video Link

We uploaded a demonstration video online. The video can be found on our project page: http://sites. google.com/site/hurjunhwa/research/gdsp. The video contains seven scenarios of matching images under non-rigid deformation. The video demonstrates the intermediate results of estimated dense correspondence fields both in the grid-cell levels and in the pixel levels. The video helps to comprehend our matching algorithm more effectively.

References

- P. F. Felzenszwalb and D. P. Huttenlocher. Efficient belief propagation for early vision. *IJCV*, 70(1), 2006. 1
- [2] K. P. Murphy, Y. Weiss, and M. I. Jordan. Loopy belief propagation for approximate inference: An empirical study. In *In* UAI, 1999. 1
- [3] H. Yang, W.-Y. Lin, and J. Lu. Daisy filter flow: A generalized discrete approach to dense correspondences. In *CVPR*, 2014.
 1, 2