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1. Scatter plots for correlations

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Measured specificity

A
u
to

m
a
te

d
 s

p
e
c
if
ic

it
y

Spearman’s ρ = 0.69, p−value < 0.01

Figure 1. Correlation between human-measured specificity and au-

tomated specificity for the MEM-5S dataset.

In the main paper, we described how automated speci-

ficity correlated with human-measured specificity. Figure 1

further illustrates this using a scatter plot. We also studied

how various image properties correlated with specificity. In

Figure 2, we illustrate these correlations via scatter plots.

2. Predicting specificity

As we have shown, certain image-level objects and at-

tributes make some images more specific than others. This

means that specificity may be predictable using image fea-

tures alone.

To test this, a ν-SVR with an RBF kernel is trained on

a randomly chosen subset of images represented by their

DECAF-6 features [2] in the MEM-5S and PASCAL-50S

datasets. In the ABSTRACT-50S dataset, the image fea-

tures are a concatenation of object occurrence, their ab-

solute position, depth, flip angle, object co-occurrence,

and clip art category [6]. For prediction, 188 images

are set aside in the MEM-5S dataset, 200 images in the
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Figure 2. What makes an image specific? Memorable images, im-

ages with large objects and important object categories tend to be

more specific. Number of annotated objects in an image does not

correlate with specificity. Results are on the MEM-5S dataset.

PASCAL-50S dataset, and 100 images in the ABSTRACT-

50S dataset. Figure 3 shows that as the number of images

used for training increases, the correlation of the predicted

specificity with the ground truth automated specificity in-

creases. We see that specificity can indeed be predicted

from just image content better than chance. The use of

semantic features (e.g. occurence of objects) as opposed

to low-level features (e.g. DECAF-6) in the ABSTRACT-

50S dataset seem to make it easier to predict specificity for

that dataset as compared to the MEM-5S and PASCAL-50S

datasets. Note that here we are directly predicting auto-

mated specificity whereas in the main paper, we focused
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Figure 3. Spearman’s rank correlation between predicted and au-

tomated specificity for increasing number of training images (av-

eraged across 50 random runs). Automated specificity (Section

3.1.2 in main paper) uses 5, 48 and 50 sentences per image for

the three datasets, MEM-5S, ABSTRACT-50S and PASCAL-50S

to estimate the specificity of the image. Predicted specificity (Sec-

tion 2) uses only image features to predict the specificity. Different

datasets have different number of images in them, hence they stop

at different points on the x-axis. Higher correlation is better. The

error bars represented by shaded colors show the standard error of

the mean (SEM).

on predicting the two parameters of the Logistic Regression

model. The latter is directly relevant to the image search

application on which we demonstrated the benefit of speci-

ficity.

3. Detailed explanation of automated speci-

ficity computation

In Figure 4, we visually illustrate the equations and nota-

tions used to automatically compute the similarity between

two sentences (described in Section 3.1.2 in the main pa-

per). To measure specificity automatically given the N de-

scriptions for image i, we first tokenize the sentences and

only retain words of length three or more. This ensured that

semantically irrelevant words, such as ‘a’, ‘of’, etc., were

not taken into account in the similarity computation (a stan-

dard stop word list could also be used instead). We iden-

tified the synsets (sets of synonyms that share a common

meaning) to which each (tokenized) word belongs using the

Natural Language Toolkit [1]. Words with multiple mean-

ings can belong to more than one synset. Let Yau = {yau}
be the set of synsets associated with the u-th word from

sentence sa.

Every word in both sentences contributes to the automat-

ically computed similarity simauto(sa, sb) between a pair

Figure 4. Illustration of our approach to compute automated sen-

tence similarity.

of sentences sa and sb. The contribution of the u-th word

from sentence sa to the similarity is cau. This contribution

is computed as the maximum similarity between this word,

and all words in sentence sb (indexed by v) (Figure 4B). The

similarity between two words is the maximum similarity be-

tween all pairs of synsets (or senses) to which the two words

have been assigned (Figure 4C). We take the maximum be-

cause a word is usually used in only one of its senses. Con-

cretely,

cau = max
v

max
yau∈Yau

max
ybv∈Ybv

simsense(yau, ybv) (1)

The similarity between senses simsense(yau, ybv) is the

shortest path similarity between the two senses on Word-

Net [4]. We can similarly define cbv to be the contribution of

v-th word from sentence sb to the similarity simauto(sa, sb)
between sentences sa and sb.



Figure 5. Examples illustrating the similarity and distinctions between image memorability [3] and image specificity.

The similarity between the two sentences is defined as

the average contribution of all words in both sentences,

weighted by the importance of each word (Figure 4A). Let

the importance of the u-th word from sentence sa be tau.

This importance is computed using term frequency-inverse

document frequency (TF-IDF) using the scikit-learn soft-

ware package [5]. Words that are rare in the corpus but

occur frequently in a sentence contribute more to the simi-

larity of that sentence with other sentences. So we have

simauto(sa, sb) =

∑
u taucau +

∑
v tbvcbv∑

u tau +
∑

v tbv
(2)

The denominator in Equation 2 ensures that the similar-

ity between two sentences is independent of sentence-length

and is always between 0 and 1.



Figure 6. Dataset browser for exploring the datasets. Available on the authors’ webpages.

4. Specificity vs. Memorability

In our paper, we have shown that specificity and memo-

rability are correlated. However, they are distinct concepts

and measure different properties of the image. In particu-

lar, we have shown that peaceful and picture-perfect scenes

are negatively correlated with memorability but have no ef-

fect on specificity. In Figure 5, we show examples of im-

ages that are specific/not specific and memorable/not mem-

orable. Note how outdoor scenes tend to be not very mem-

orable but can have a reasonably high specificity score.

5. Website for exploring datasets

Here, we describe the website interface available on the

authors’ webpages that can be used to explore the datasets

used in the paper. A navigation bar on top of the website

allows users to switch between different datasets. Figure 6

shows how the search function can be used to look for sen-

tences containing the words “dog” and “woman”. Up to

a maximum of 6 words can be added in the search box.

Only whole words are matched. The reader should note that

the website does not implement the text-based search algo-

rithms discussed in the paper. It is meant for only browsing

the datasets. Sliders on the left allow the user to filter im-

ages according to a range of scores that the images satisfy.

All the criteria are combined using logical AND to display

the filtered images. The number of images matching the

search criteria gives the user an idea of how often two or

more criteria are satisfied concurrently. The benefit of us-

ing such a website is that it can give the readers an intuition

of the underlying data and factors that affect specificity. We

have added sliders for the attributes that correlate most (top

10) and least (bottom 10) with specificity (for the MEM-5S

dataset). It is also possible to filter by average length of the

sentences and the memorability score.

Glossary

automated specificity Specificity computed from image textual descrip-

tions by averaging automatically computed sentence similarities (Section

3.1.2 in main paper) [1, 2] human specificity Specificity measured from

image textual descriptions by averaging human-annotated sentence simi-

larities (Section 3.1.1 in main paper) [1] predicted specificity Specificity

computed from image features without any textual descriptions (Section 2)

[1, 2]
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