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In this supplemental materials, we provide more detailed analysis and results for the DASC descriptor.

• In Section 1, we describe how Eq. (10) is derived from Eq. (9).

• In Section 2, we provide additional experimental results to evaluate the accuracy and runtime efficiency of the DASC

descriptor when using the symmetric weight in Eq. (7) and the asymmetric weight in Eq. (9), respectively.

• In Section 3, we show the multi-modal and multi-spectral dataset used in the sampling pattern learning for the patch-

wise receptive field pooling, and visualize the estimated sampling pattern.

• In Section 4, we analyze the effect of two parameters (local support window size and feature dimension) used in the

DASC descriptor, and provide more results in three datasets; Middlebury stereo benchmark, multi-modal and multi-

spectral image pairs, and MPI SINTEL optical flow benchmark.

1. Derivation of Decomposition Eq. (10) from Eq. (9)

In this section, we describe the derivation of Eq. (10) from Eq. (9). By using an asymmetric weight ωi,i′ in adaptive

self-correlation Ψ̃(i, j), we can decompose the adaptive self-correlation into several weighted sum operations. This enables

us to further reduce the computational complexity required for computing the DASC descriptor.
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2. Symmetric Weights ωs,s′ωt,t′ vs. Asymmetric Weights ωs,s′ in the DASC descriptor

This section analyzes the performance of the DASC descriptor when using a symmetric weight ωs,s′ωt,t′ in Eq. (7)

and with an asymmetric weight ωs,s′ in Eq. (9). For using the symmetric weight, we first re-arrange the sampling pattern

(si,l, ti,l) to reference-biased pairs (i, j) = (i, i + ti,l − si,l). With f̄i′ = fi′ − Gi and f̄j′ = fj′ − Gi,j , Eq. (7) can be

re-written as
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After computing f̄i′ and f̄j′ for all pixels, the numerator is computed for each sampling pattern offset (i, j) as weighted

average of f̄i′ f̄j′ with symmetric weights ωi,i′ωj,j′ . The denominator is also computed as weighted average of f̄2

i′ with

weights ω2

i,i′ and weighted average of f̄2

j′ with weights ω2

j,j′ . In experiments, we used the guided filter (GF) [10], which

computes the weighted average in a constant time O(I) (I: image size).

However, the symmetric weight ωs,s′ωt,t′ varies for each l ∈ L where L is the number of sampling patterns, and thus

this weight should be repeatedly computed for each l, resulting in a huge complexity for computing the numerator in Eq.

(7). Moreover, ωs,s′ωt,t′ , ω
2

s,s′ , and ω2

t,t′ should be computed with a range distance using 6-D vector (or 2D vector), when

an input is a color image (or 2-D vector), thus significantly increasing the runtime of constant time edge-aware filtering

algorithms (e.g., GF [10]).

To alleviate this problem, our approach employs only the asymmetric weight ωs,s′ for accelerating the computation of the

adaptive self-correlation. We found that this modification does not degenerate the performance of the descriptor severely.

Fig. 1 and 2 shows the disparity maps obtained using the DASC descriptor with symmetric and asymmetric weights. Fig.

3 shows average bad-pixel error rates on the Middlebury benchmark [1]. A performance gap between using the asymmetric

weight and the symmetric weight is negligible.

(a) Dolls (b) Baby1 (c) Books (d) Cloth3 (e) Cloth4 (f) Moebius

Figure 1. Comparison of the disparity estimation for Dolls, Baby1, Books, Cloth3, Cloth4, and Moebius image pairs taken under exposure

combination ‘0/0’. The first two rows shows the disparity maps obtained using the DASC descriptor with asymmetric and symmetric

weights, where the winner-takes-all (WTA) method is used for optimization. The third and fourth rows shows the disparity maps, where

the Graph Cuts (GC) method is used for optimization.



(a) Dolls (b) Baby1 (c) Books (d) Cloth3 (e) Cloth4 (f) Moebius

Figure 2. Comparison of the disparity estimation for Dolls, Baby1, Books, Cloth3, Cloth4, and Moebius image pairs taken under exposure

combination ‘0/2’. The first two rows shows the disparity maps obtained using the DASC descriptor with asymmetric and symmetric

weights, where the winner-takes-all (WTA) method is used for optimization. The third and fourth rows shows the disparity maps, where

the Graph Cuts (GC) method is used for optimization.
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Figure 3. Comparison of average bad-pixel error rates on Middlebury benchmark for the DASC descriptor with symmetric and asymmetric

weights. (from left to right) Average bad-pixel error rates optimized with WTA under illumination and exposure variations, and GC under

illumination and exposure variations.

Table 1 reports the computational complexity of the DASC descriptor for the brute-force implementation and the proposed

efficient implementation when using the symmetric and asymmetric weights. The DASC descriptor with asymmetric weights

provides a low computational complexity thanks to its efficient computational framework.

image size SIFT [13] DAISY [17] LSS [14]
DASC* w/

sym.

DASC†w/

sym.

DASC* w/

asym.

DASC†w/

asym.

463× 370 130.3s 2.5s 31s 197.2s 9s 128s 5s

Table 1. Evaluation of the computational complexity. The brute-force and efficient implementation of the DASC is denoted as * and

†, respectively. However, the DASC descriptor with symmetric weights need more computational load compared to that of asymmetric

weights.



3. Multi-modal and Multi-spectral Feature Learning

In this section we provide an example of training pairs, denoted as P = {(R1

m,R2

m, ym)|m = 1, ..., Nt}, used in the

sampling pattern learning where (R1,R2) are support window pairs, and Nt is the number of training samples. y is a

binary label that becomes 1 if two patches are matched or 0 otherwise. The training data set P was built from ground

truth correspondence maps for images captured under varying illumination conditions and/or with imaging devices [1, 5].

It should be noted that since multi-modal and multi-spectral pairs do not have a ground truth dense correspondence, we

manually obtained ground truth displacement vectors [16]. In our experiments, we first established 50,000 multi-spectral

and multi-modal support window pairs, as shown in Fig. 4. Among them, 5,000 matching support window pairs (positive

samples, i.e., ym = 1) were randomly selected from true matching pairs, while 5,000 non-matching support window pairs

(negative samples, i.e., ym = 0) were made by randomly selecting two support windows from different matching pairs. Thus,

in total, Nt = 10, 000 training support window pairs were built. In experiments, each training set is mutually used to learn

a sampling pattern. Specifically, the sampling pattern for Middlebury benchmark data set is learned from the multi-spectral

and multi-modal benchmark. In a similar way, the sampling patterns for multi-modal and multi-spectral benchmark and MPI

SINTEL benchmark are learned from MPI SINTEL benchmark and multi-modal and multi-spectral benchmark, respectively.

(a) Middlebury benchmark (b) Multi-spectral and Multi-modal (c) MPI SINTEL benchmark

Figure 4. Some examples of 50,000 support window training pairs built from Middlebury stereo benchmark, multi-spectral and multi-modal

benchmark, and MPI optical flow benchmark.



Fig. 5 shows patch-wise receptive fields on learned sampling patterns used in our DASC descriptor. For an effective

visualization, we followed the practice used in [8]. We stacked all patch-wise receptive fields learnt from the Middlebury

stereo benchmark [1], the multi-modal and multi-spectral benchmark [16, 3, 15, 9, 12], and the MPI SINTEL benchmark [5],

respectively. A set of histogram bins corresponding to the patch of each patch-wise receptive field are incremented by one,

and they are finally normalized with the maximum value. The density of patch-wise receptive fields tends to be concentrated

on the center. In many literature, it has been shown that such a center-biased density distribution pooling in the local feature

provides the robustness [2, 8].
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Figure 5. Visualization of patch-wise receptive fields of the DASC descriptor which are learned from Middlebury benchmark, multi-spectral

and multi-modal benchmark, and MPI SINTEL benchmark.



4. More Results

In this section, we fist analyze the effects of the support window size and the feature dimension in our DASC descriptor.

Then, we provide the additional results for our DASC descriptor and state-of-the-art descriptor-based methods and area-based

methods using the Middlebury stereo benchmark, the multi-modal and multi-spectral image pair benchmark, and the MPI

SINTEL optical flow benchmark.

4.1. Effects of Window Size and Feature Dimension

We analyze the effects of the support window size M and a feature dimension L in our DASC descriptor on the Middlebury

stereo benchmark. We evaluate the performance by varying M from 5 × 5 to 33 × 33 and L from 50 to 400, respectively.

It is worth noting that the computational complexity of our DASC descriptor is independent of the support window size M ,

since we extract the sampling patterns through the receptive field pooling from the support window. Instead, its complexity

linearly increases in proportional to the number of sampling patterns, i.e., the feature dimension L.

Fig. 6 shows the stereo matching results obtained with varying M . As expected, using small support windows degenerates

the matching quality. In our paper, we used 31× 31 as the support window size. Fig. 7 shows that the accuracy of the DASC

descriptor is saturated when L is between 150 ∼ 200. Considering the trade-off between the accuracy and the runtime

efficiency, we set the feature dimension L to 128.

(a) 5× 5 (b) 9× 9 (c) 13× 13 (d) 17× 17 (e) 21× 21 (g) 31× 31

Figure 6. Results of disparity estimation for Dolls and Wood1 image pairs taken under exposure combination ‘0/1’ by varying the support

window size M in the DASC descriptor. In our work, we used N = 31× 31 as the size of support window.

(a) 50 dim. (b) 128 dim. (c) 150 dim. (d) 200 dim. (e) 250 dim. (f) 400 dim.

Figure 7. Results of disparity estimation for Dolls and Wood1 image pairs taken under exposure combination ‘0/1’ by varying the descriptor

dimension L in the DASC descriptor. In our work, we used L = 128 as the length of descriptor dimension.



4.2. Middlebury Stereo Benchmark

In Middlebury stereo benchmark, we used the Art, Baby1, Books, Bowling2, Cloth3, Cloth4, Dolls, Moebius, Reindeer,

and Wood1. In this supplementary materials, the results for bold image pairs are shown. Fig. 8, 9, 10, 11, and 12 compare

the disparity maps estimated for stereo image pairs taken with an exposure combination ‘0/2’.

Figure 8. Comparison of disparity estimation for Dolls image pairs taken under illumination combination ‘0/2’. (from left to right, top and

bottom) Left color image, right color image, and disparity maps for the ground truth, ANCC [11], BRIEF [6], DAISY [17], SIFT [13], LSS

[14], DASC+RP, and DASC+LRP.

Figure 9. Comparison of disparity estimation for Moebius image pairs taken under illumination combination ‘0/2’. (from left to right, top

and bottom) Left color image, right color image, and disparity maps for the ground truth, ANCC [11], BRIEF [6], DAISY [17], SIFT [13],

LSS [14], DASC+RP, and DASC+LRP.



Figure 10. Comparison of disparity estimation for Books image pairs taken under illumination combination ‘0/2’. (from left to right, top

and bottom) Left color image, right color image, and disparity maps for the ground truth, ANCC [11], BRIEF [6], DAISY [17], SIFT [13],

LSS [14], DASC+RP, and DASC+LRP.

Figure 11. Comparison of disparity estimation for Baby1 image pairs taken under illumination combination ‘0/2’. (from left to right, top

and bottom) Left color image, right color image, and disparity maps for the ground truth, ANCC [11], BRIEF [6], DAISY [17], SIFT [13],

LSS [14], DASC+RP, and DASC+LRP.

Figure 12. Comparison of disparity estimation for Reindeer image pairs taken under illumination combination ‘0/2’. (from left to right, top

and bottom) Left color image, right color image, and disparity maps for the ground truth, ANCC [11], BRIEF [6], DAISY [17], SIFT [13],

LSS [14], DASC+RP, and DASC+LRP.



4.3. Multi-modal and Multi-spectral Image Pairs

In experiments, the multi-modal and multi-spectral image pairs consist of RGB-NIR images, flash-noflash images, images

taken under different exposures, and blurred-clean images.

• RGB-NIR image pairs: epfl1, epfl2, epfl3, epfl4, epfl5, epfl6, lion, myrgbnir, orchid, stereo3, and stereo4.

• Flash-noflash image pairs: Dolls1, Dolls2, and Dolls3.

• Image pairs taken under different exposures: altar, BabyAtWindow, BabyOnGrass, balcony, books, ChristmasRider,

clouds, FeedingTime, flower, HighChair, LadyEating, lantern, mpi, PianoMan, room, SantasLittleHelper, street, and

window.

• Blurred-clean image pairs: avisar, books1, books2, cars1, cars2, children, face1, face2, flowers, , numbers, and yemin.

In this supplementary materials, the results for bold image pairs are shown. Fig. 13, 14, 15, and 16 show the warped color

image and its corresponding 2-D flow fields for multi-modal and multi-spectral image pairs. For the results of objective

comparison, please refer to Table 2 in our paper.



Figure 13. Comparison of dense correspondence for RGB-NIR images including orchid, lion, and epfl6. (from top to bottom) Input image

pairs, RSNCC [16], BRIEF [6], DAISY [17], SIFT [13], LSS [14], DASC+RP, and DASC+LRP.



Figure 14. Comparison of dense correspondence for different exposure images including lantern, balcony, and room . (from top to bottom)

Input image pairs, RSNCC [16], BRIEF [6], DAISY [17], SIFT [13], LSS [14], DASC+RP, and DASC+LRP.



Figure 15. Comparison of dense correspondence for flash-noflash images including Dolls1, Dolls2, and Dolls3. (from top to bottom) Input

image pairs, RSNCC [16], BRIEF [6], DAISY [17], SIFT [13], LSS [14], DASC+RP, and DASC+LRP.



Figure 16. Comparison of dense correspondence for blurred images cars1, books1, and face1. (from top to bottom) Input image pairs,

RSNCC [16], BRIEF [6], DAISY [17], SIFT [13], LSS [14], DASC+RP, and DASC+LRP.



4.4. MPI SINTEL Optical Flow Benchmark

In MPI SINTEL optical flow benchmark, the dataset consists of two kind of rendering frames, namely clean pass and final

pass, each containing 12 sequences with over 500 frames in total [5]. Fig. 17 shows visual comparison on the MPI SINTEL

benchmark, where the warped color image and its corresponding 2-D flow fields are depicted.

Figure 17. Visual comparison on the MPI Sintel benchmark. (from left to right) Input image 1 and 2, flow field estimation results of LDOF

[4] and LDOF with the DASC+LRP descriptor. Note that the histogram of oriented gradient (HOG) [7] is used in the original LDOF [4].
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