
Supplemental – Picture: A probabilistic programming language for scene
perception

Tejas D Kulkarni
MIT

tejask@mit.edu

Pushmeet Kohli
MSR Cambridge

pkohli@microsoft.com

Joshua B Tenenbaum
MIT

jbt@mit.edu

Vikash Mansinghka
MIT

vkm@mit.edu

1. 3D medially-symmetric object reconstruc-
tion program

As illustrated in Figure 1, the height H of the object is
sampled from a uniform distribution. 3D Objects can con-
sist of several sub-parts. Without the loss of generality and
for simplicity, we study objects with up-to two sub-parts
and circular cross-section. We sample a cut C along the
medial axis of the object using the beta distribution, result-
ing in two independent GPs spanning the cut proportions.
Since the smoothness and profile of 3D objects is a pri-
ori unknown, we need to do hyper-parameter inference on
the bandwidths L1 and L2 of the covariance kernel of the
GPs. The resulting points fGP(x) from GPs are passed to
the graphics simulator for lathing based mesh generation,
which results in the generation of IR. During inference,
reconstructing 3D objects amounts to calculating the poste-
rior P (S = {H,C,L1, L2}|ID). While collecting results,
we found that running multiple indepedent chains and ag-
gregating the estimates (MAP or average) gave much better
parses. For visualizing the underlying stochastic process,
refer to supplemental video.

The 3D shape program in Figure 3 could then be roughly
formalized as follows:

H ∼ Uniform(a0, b0) and C ∼ ac + bc ∗Beta(1, H)

L1 ∼ a1 + b1Beta(2, 5), x1 = [a0, C]

L2 ∼ a1 + b1Beta(2, 5), x2 = [C + 1, b0]

k(xi
p, x

j
p) = exp

(
−

(xi
p − xj

p)

2L2
1

)
where p ∈ {1, 2} denote parts and

min(xp) ≤ (i, j) ≤ max(xp)

fp
GP(x) =

{
normalize(GP(0, k(xi

p, x
i′

p))) 0 ≤ length(xp)

0 otherwise

IR = gLATHE({f1
GP(x

m
1)}, {f2

GP(x
n
2)})

where min(x1) ≤ m ≤ max(x1) and min(x2) ≤ n ≤
max(x2).

Figure 1: 3D Shape Program Visualization

2. 3D Human Pose Program

It is important to note that this particular program faces
a lot of difficulty under clutter mainly due to lack of robust
bottom-up features. Moreover, the graphics program could
be significantly improved by using BlendSCAPE[2] model
along with approximately reasoning about people’s clothes
for more accurate body-part localization. Please refer to
Figure 4 to view the probabilistic program. While collecting
results, we found that running multiple indepedent chains
and aggregating the estimates (MAP or average) gave much
better parses.

3. Generative Face Program

Since the dimensionality of the face program is high
(8 sets of 100 dimensional continuous coupled latent vari-
ables), single-site metropolis hastings algorithm is highly
inefficient as the number of simulation updates scale lin-
early with dimensionality of latents. Picture allows us to
easily swap inference scheme, which enabled us to quickly
discover that elliptical slice moves are significantly more

4321

1
0

50

100

150

200

250

300

350

400

450

Iterations

T
im

e(
se

co
nd

s)

Single−site MH
Elliptical Move

Figure 2: Inference run-time comparison for face pro-
gram: We ran 30 independent inference runs each by tog-
gling the inference scheme between single-site metropolis
hastings and elliptical slice proposals. Elliptical moves give
significant speedup to reach a certain level of score, which
is expected as single-site updates will scale linearly with di-
mensionality of latents.

efficient than Metropolis-Hastings proposals (see Figure 2).
While collecting results, we found that running multiple in-
depedent chains and aggregating the estimates (MAP or av-
erage) gave much better parses.

4. Mesh Induction: Differentiable Rendering
Program

See Figure 5a for an example program where the task is
to do parameter estimation of camera and light variables
given an observed image. Picture allows users to easily
switch between using sampling schemes for a given pro-
gram (infer(callback, iterations, scheme), where scheme
could be MCMC or HMC).

References
[1] Blender Online Community. Blender - a 3D modelling and

rendering package. Blender Foundation, Blender Institute,
Amsterdam,

[2] D. A. Hirshberg, M. Loper, E. Rachlin, and M. J. Black.
Coregistration: Simultaneous alignment and modeling of ar-
ticulated 3d shape. In ECCV. 2012.

[3] M. M. Loper and M. J. Black. Opendr: An approximate dif-
ferentiable renderer. In ECCV 2014. 2014.

[4] R. Neal. Mcmc using hamiltonian dynamics. Handbook of
Markov Chain Monte Carlo, 2, 2011.

4322

function GP(xs,L)
cov = zeros(length(xs),length(xs))
mu = zeros(length(xs))
for i=1:length(xs)
for j=1:length(xs)

cov = exp(-(xs[i]-xs[j])ˆ2/(2*lˆ2))
end

end
return mu,cov

end

function PROGRAM(observation_dt)
RES = 120
height = Uniform(5,7.8,1,1)
xs = [0:height/RES:height]
samples = zeros(length(xs))

cut_var = Beta(1,5,1,1)
cut1,cut2 = sample_cut(xs,height,cut_var,RES)
l1 = 5*Beta(2,5,1,1)
l2 = 5*Beta(2,5,1,1)

if length(cut1)>0
mu,cov = GP(xs[cut1],l1)
samples[cut1]=MvNormal(mu, cov)
samples[cut1] = normalize(samples[cut1])

end

if length(cut2)>0
mu,cov = GP(xs[cut2],l2)
samples[cut2]=MvNormal(mu, cov)
samples[cut2] = normalize(samples[cut2])

end
#camera:[scale,rotation,translation]
camera = [Normal(0.98,0.1,1,3), Normal(0,5,1,3),

Uniform(-1,1,1,3)]
#Call Blender API
render = render("profile", samples, "cross-sec", xs, "camera", camera)
edgemap = canny(rendering,1.0);
valid_indxs = np.where(edgemap>0)
D = np.multiply(observation_distance_transform, rendering)
observe(0,Normal(0,0.35),D)

end

global observation_distance_transform
edge_img = canny(imread("test.png"),1.0)
observation_distance_transform = scipy.distance_transform_bf(edge_img)

TR = trace(PROGRAM,[])
infer(TR, debug_callback,100,"MCMC")

Figure 3: Picture code for 3D Object Reconstruction via Lathing: Gaussian Process based 3D reconstruction program of
lathe objects. This program samples 3D shapes with two independent sub-parts. We used probabilistic chamfer distance as
the stochastic comparator.

4323

function render(hip_location,...,camera)
args = [hip_location,...,camera]
blender.println("cmd:skin-modifier")
rendered_image = blender.println(args)
return rendered_image
end

function PROGRAM()
sigma_0 = Uniform(10,50,1,1)
hip_location = Uniform(-0.35,0,1,3)
elbowR_rotation = Normal(0,sigma_0,1,3); elbowR_location = Uniform(-1,1,1,3)
elbowL_rotation = Normal(0,sigma_0,1,3); elbowL_location = Uniform(-1,1,1,3)
heelL_location = Uniform(-0.1,0.45,1,3); heelR_location = Uniform(-0.1,0.45,1,3)

#camera:[scale, rotation, translation]
camera = [Normal(0.98,0.1,1,1), Normal(0,5,1,3), Uniform(-1,1,1,2)]

#Call Blender API
rendering = render("bone-id0", hip_location, ... ,...,"camera", camera)

edgemap = canny(rendering,1.0);
valid_indxs = np.where(edgemap>0)
D = np.multiply(observation_distance_transform[valid_indxs], rendering[valid_indxs])
observe(0,Normal(0,0.35),D)

end

global observation_distance_transform
edge_img = canny(imread("test.png"),1.0)
observation_distance_transform = scipy.distance_transform_bf(edge_img)

TR = trace(PROGRAM,[])
infer(TR, debug_callback,100,"MCMC")

Figure 4: Picture code for 3D Human Pose: This program use an existing base mesh of a human body, defines priors
over bone location and joints, and enables armature skin-modifier[1] via Picture’s Blender engine API. We used probabilistic
chamfer distance as the comparator.

4324

function render(TR,ROT,SPH)
m=util_tests.get_earthmesh()
V=ch.array(m["v"])
A = odr.SphericalHarmonics(vn=odr.VertNormals(v=V,

f= m["f"]),
components=SPH,
light_color=ch.ones(3))

U = odr.ProjectPoints(v=V, f=[300,300.],
c=[w/2.,h/2.],
k=ch.zeros(5),
t=ch.zeros(3), rt=ch.zeros(3))

ren = odr.TexturedRenderer(vc=A, camera=U,
f=m["f"],
bgcolor=[0.,0.,0.],texture_image=m["texture_image"],
vt=m["vt"], ft=m["ft"],
frustum={"width"=>w, "height"=>h,"near"=>1,"far"=>20},
w=w,h=h))

ren["v"]=TR + V.dot(Rodrigues(ROT))
return m,V,A,U,ren

end

function PROGRAM(test_image)
translation = Uniform(-1,1,1,3)
rotation = Normal(0,10,1,3)
spherical_harmonics = Normal(0,3,1,9)
rendering = render(translation, rotation, spherical_harmonics)
observe_gpyramid(rendering, test_image)

end

global test_image = imread("test.png");
TR = trace(PROGRAM,[])
SCHEME could potentially be "HMC", "MCMC"
infer can also be sequentially called with
combinations of SCHEME’s
infer(TR, debug_callback,100,SCHEME)

(a) Gradient Based Mesh Program. The task is to optimize or sample the values of translation,
rotation and light variables (spherical harmonic co-efficients) given test image. The observation
model (or cost function in case of optimization) is a noisy Gaussian pyramid difference between
the rendered and observed images.

0 50 100 150 200

Iterations

2500000

2000000

1500000

1000000

500000

0

500000

1000000

1500000

2000000

Lo
g
-L

ik
e
lih

o
o
d

(b) Typical inference trajectory of the pro-
gram given an observed image

Figure 5: Example Picture program with automatic gradients for HMC proposals.

4325

