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1. Introduction
The proposed method has been developed based on nonlinear Bayesian filtering, and, in the implementation, we utilized

the extended Kalman filter (EKF) [1]. In this supplementary material, we provide the detailed derivations of the proposed
method, including the derivations of the jacobians of the proposed nonlinear system models.

2. State
In the proposed system, the state vector x is defined by

x =
[

xT
v yT

1 yT
2 · · ·

]T
=

[
qT
WC ωT

C yT
1 yT

2 · · ·
]T
, (1)

where qWC = [q1, q2, q3, q4]T denotes a quaternion for the current camera orientation, ωC an angular velocity, and yi =
[θi, φi]

T a vanishing direction (VD).

3. Camera Motion Model
Since we aim at estimating the camera orientation in an image sequence, we assume a constant angular velocity model as

the camera motion model. The model function is defined as

fv =

[
qnew
WC

ωnew
C

]
=

[
qold
WC × q((ωold

C + Ω)∆t)
ωold
C + Ω

]
, (2)

where the quaternion for the rotation (ωold
C + Ω)∆t in the axis-angle representation, q((ωold

C + Ω)∆t), is as follows.

q((ωold
C + Ω)∆t) =

[
cos(‖ωold

C + Ω‖∆t
2 )

ωold
C +Ω

‖ωold
C +Ω‖ sin(‖ωold

C + Ω‖∆t
2 )

]
(3)

The multiplication of the quaternions q and p is represented by

q× p = Q(q)p = P(p)q, (4)

where the matrix Q(q) and P(p) are defined by

Q(q) =


q1 −q2 −q3 −q4

q2 q1 −q4 q3

q3 q4 q1 −q2

q4 −q3 q2 q1

 , (5)

P(p) =


p1 −p2 −p3 −p4

p2 p1 p4 −p3

p3 −p4 p1 p2

p4 p3 −p2 p1

 . (6)
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4. Measurement Model
The measurement model hij for the i-th VD of the state vector and the j-th line features is defined by

hij = dT
i R(qWC)nij . (7)

The i-th unit VD vector di in Cartesian coordinates is relevant to the i-th VD vector yi in spherical coordinates as

di =

 xi
yi
zi

 =

 cosφi cos θi
cosφi sin θi

sinφi

 , (8)

yi =

[
θi
φi

]
=

[
atan2(yi, xi)

atan2(zi,
√
x2
i + y2

i )

]
, (9)

where atan2 is the arctangent function. The rotation matrix R for a quaternion q is calculated by

R(q) =

 q2
1 + q2

2 − q2
3 − q2

4 2(q2q3 − q1q4) 2(q2q4 + q1q3)
2(q2q3 + q1q4) q2

1 − q2
2 + q2

3 − q2
4 2(q3q4 − q1q2)

2(q2q4 − q1q3) 2(q3q4 + q1q2) q2
1 − q2

2 − q2
3 + q2

4

 . (10)

5. Initialization
Let dC,i = [d1, d2, d3]

T denote a VD vector in the camera coordinates and qWR = [q1, q2, q3, q4]
T the quaternion of the

current camera orientation. Then, using Eq. (10), the VD di is

di = R (qWC) dC,i

=

 q2
1 + q2

2 − q2
3 − q2

4 2(q2q3 − q1q4) 2(q2q4 + q1q3)
2(q2q3 + q1q4) q2

1 − q2
2 + q2

3 − q2
4 2(q3q4 − q1q2)

2(q2q4 − q1q3) 2(q3q4 + q1q2) q2
1 − q2

2 − q2
3 + q2

4

 d1

d2

d3

 . (11)

Eq. (11) is used to compute the covariance of a new VD, Pynew
. The covariance Pynew

is defined as

Pynew
=
∂ynew

∂xv
Pxv

∂ynew

∂xv

T

+ P̃ynew . (12)

In Eq. (12), the covariances Pxv
and P̃ynew

are already known. Therefore, one needs to compute just the jacobian ∂ynew

∂xv
.

From Eq. (8), (9), and (11), the jacobian is derived as

∂ynew

∂xv
=
∂ynew

∂di

∂di

∂xv
(13)

The left jacobian of the right term of Eq. (13) is derived from Eq. (9), as follows.

∂ynew

∂di
=

 − yi

x2
i +y2

i

xi

x2
i +y2

i
0

− zi
x2
i +y2

i +z2
i

xi√
x2
i +y2

i

− zi
x2
i +y2

i +z2
i

yi√
x2
i +y2

i

√
x2
i +y2

i

x2
i +y2

i +z2
i

 (14)

The right jacobian of the right term of Eq. (13) is derived from Eq. (11), as

∂di

∂xv
=
[

∂di

∂qWC

∂di

∂ωC

]
, (15)

where the right jacobian of the right term of Eq. (15) is set to a 3 × 3 zero matrix and the left jacobian of the right term of
Eq. (15) can be derived as follows.

∂di

∂qWC
=

 2q1d1 − 2q4d2 + 2q3d3 2q2d1 + 2q3d2 + 2q4d3 2q3d1 + 2q2d2 + 2q1d3 2q4d1 − 2q1d2 + 2q2d3

2q4d1 + 2q1d2 − 2q2d3 2q3d1 − 2q2d2 − 2q1d3 2q2d1 + 2q3d2 + 2q4d3 2q1d1 − 2q4d2 + 2q3d3

−2q3d1 + 2q2d2 + 2q4d3 2q4d1 + 2q3d2 − 2q2d3 −2q1d1 + 2q4d2 − 2q3d3 2q1d1 + 2q3d2 + 2q4d3


(16)
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6. Prediction Step
In the prediction step of the EKF system, an estimate of the current state is produced from Eq. (2), and the current

covariance P̂ is estimated by

P̂ =

[
∂fv
∂xv

Pxv

∂fv
∂xv

T
+ ∂fv

∂Ω PΩ
∂fv
∂Ω

T ∂fv
∂xv

Pxvy

Pyxv

∂fv
∂xv

T
Py

]
, (17)

where PΩ is a covariance of the noise Ω of the motion model, Pxvy and Pyxv
are covariances for the camera orientation and

the VDs, and Py is the covariance of the VDs. Unlike that the covariances are already known, the two jacobians ∂fv
∂xv

and
∂fv
∂Ω should be computed. First, the jacobian of the camera motion model for the camera state, ∂fv

∂xv
, is derived from Eq. (2) as

∂fv
∂xv

=

[ ∂qnew
WC

∂qold
WC

∂qnew
WC

∂ωold
C

∂ωnew
C

∂qold
WC

∂ωnew
C

∂ωold
C

]
=

[
∂qnew

WC

∂qold
WC

∂qnew
WC

∂ωold
C

03×4 I3

]
, (18)

where 03×4 is a 3× 4 zero matrix, and I3 is a 3× 3 identity matrix. Here, the jacobian of the new camera orientation for the
old camera orientation, ∂qnew

WC

∂qold
WC

, is easily derived using Eq. (6), as follows.

∂qnew
WC

∂qold
WC

= P
(
q
((
ωold
C + Ω

)
∆t
))

I4 (19)

Let ωold
C = [w1, w2, w3]

T. Then, the jacobian ∂qnew
WC

∂ωold
C

is derived as

∂qnew
WC

∂ωold
C

= Q
(
qold
WC

)
m(ωold

C ,∆t, 1) m(ωold
C ,∆t, 2) m(ωold

C ,∆t, 3)
n(ωold

C ,∆t, 1) o(ωold
C ,∆t, 1, 2) o(ωold

C ,∆t, 1, 3)
o(ωold

C ,∆t, 2, 1) n(ωold
C ,∆t, 2) o(ωold

C ,∆t, 2, 3)
o(ωold

C ,∆t, 3, 1) o(ωold
C ,∆t, 3, 2) n(ωold

C ,∆t, 3)

 , (20)

where

m(ωold
C ,∆t, i) = − wi

‖ωold
C ‖

sin

(
‖ωold

C ‖∆t
2

)
∆t

2
, (21)

n(ωold
C ,∆t, i) =

‖ωold
C ‖ − w2

i /‖ωold
C ‖

‖ωold
C ‖2

sin

(
‖ωold

C ‖∆t
2

)
+

w2
i

‖ωold
C ‖2

cos

(
‖ωold

C ‖∆t
2

)
∆t

2
, (22)

o(ωold
C ,∆t, i, j) = − wiwj

‖ωold
C ‖3

sin

(
‖ωold

C ‖∆t
2

)
+

wiwj

‖ωold
C ‖2

cos

(
‖ωold

C ‖∆t
2

)
∆t

2
. (23)

In addition, the jacobian ∂fv
∂Ω can be derived in a manner similar to the derivation of Eq. (18).

7. Update Step
In the update step of the EKF system, the computation of the jacobian of the measurement model for the camera state,

∂hij

∂xv
, is required for correcting the estimate. The jacobian is represented as

∂hij
∂xv

=

[
∂hij
∂qWC

∂hij
∂ωC

· · · ∂hij
∂yi

· · ·
]
. (24)

The jacobian of the measurement model for the camera orientation, ∂hij

∂qWC
, is derived using Eq. (7) and (10) as

∂hij
∂qWC

=

[
∂hij
∂q1

∂hij
∂q2

∂hij
∂q3

∂hij
∂q4

]
, (25)
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where

∂hij
∂q1

= 2dT
i

 q1 −q4 q3

q4 q1 −q2

−q3 −q2 q1

nij , (26)

∂hij
∂q2

= 2dT
i

 q2 q3 q4

q3 −q2 −q1

q4 −q1 −q2

nij , (27)

∂hij
∂q3

= 2dT
i

 −q3 q2 q1

q2 q3 q4

−q1 q4 −q3

nij , (28)

∂hij
∂q4

= 2dT
i

 −q4 −q1 q2

q1 −q4 q3

q2 q3 q4

nij . (29)

The jacobian of the measurement model for the angular velocity, ∂hij

∂ωC
, is a 3-dimensional row vector with all elements

equal to zero, since the measurement model does not involve the variables of the angular velocity. The jacobian of the
measurement model for the i-th VD, ∂hij

∂yi
, is derived as

∂hij
∂yi

=
∂hij
∂di

∂di

∂yi
, (30)

where the left jacobian of the right term, ∂hij

∂di
, is computed using Eq. (7), as

∂hij
∂di

= (R(qWC)nij)
T
, (31)

and the right jacobian of the right term, ∂di

∂yi
, is computed using Eq. (8), as follows.

∂di

∂yi
=

 − cosφi sin θi − sinφi cos θi
cosφi cos θi − sinφi sin θi

0 cosφi

 (32)

When computing the jacobian ∂hij

∂xv
, all the jacobians ∂hkl

∂yk
except for k = i and l = j are 2-dimensional row vectors with

all elements equal to zero.
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