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0.1. Definitions of the terms

In Eqn.(1) of the main body, the rotation matrix Rg ¢ is:
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0 sin@ cos 0 —sing 0 cos¢

Here Q is a 3x3 orthogonal matrix in the form [é;, €, 1],
where n is the normal vector of the plane spanned by p1,
P2, and €1, é; are arbitrary two orthogonal vectors that are
also orthogonal to n.

In Eqn.(7) of the main body, the shape-preserving term
is [11:
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where NV is the quad number, ¢ is a quad index, and
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Here (24,0,Y4,0)s - (Zq,3, Yq,3) denote a warped quad, and
(4,01Uq,0)s - (£4,3, Uq,3) the input quad.

0.2. Preserving local smoothness of curves

To compare with local-smoothness-preserving, we im-
plement a simple method to minimize the differences of
directions of adjacent segments. We replace the geodesic-
preserving term with:
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where NN, is the number of segments; e;, e; are two ad-
jacent segments on a curve (each represented by the differ-
ence of its two endpoints). The adjacent segments are en-
couraged to have similar directions. We combine this term
with the shape and boundary terms

E(V) =ApEp(V) +AsEs(V) + AcEc(V).  (5)

Here A\¢ = 100 is the weight of the curvature term. We
solve this energy function via the Gauss-Newton method.
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