SOLD: Sub-Optimal Low-rank Decomposition for Efficient Video Segmentation Supplymental material

Chenglong Li^{1}, Liang Lin ${ }^{2 *}$, Wangmeng Zuo ${ }^{3}$, Shuicheng Yan ${ }^{4}$, Jin Tang ${ }^{1}$
${ }^{1}$ School of Computer Science and Technology, Anhui University, Hefei,China
${ }^{2}$ School of Advanced Computing, Sun Yat-sen University, Guangzhou, China
${ }^{3}$ School of Computer Science and Technology, Harbin Institute of Technology, China
${ }^{4}$ Department of ECE, National University of Singapore, Singapore
lcl1314@foxmail.com, linliang@ieee.org, \{cswmzuo, ahhftang\}@gmail.com, eleyans@nus.edu.sg

1. Alternating optimization in SOLD

The objective function of SOLD is

$$
\begin{equation*}
\min _{\mathbf{A}, \mathbf{B}, \mathbf{E}} \frac{1}{2}\|\mathbf{X}-\mathbf{X A B}-\mathbf{E}\|_{F}^{2}+\lambda\|\mathbf{E}\|_{1}+\frac{\beta}{2}\|\mathbf{A B}\|_{F}^{2}+\gamma \operatorname{tr}\left((\mathbf{A B})^{T} \mathbf{Q}\right), \tag{1}
\end{equation*}
$$

We adopt the alternating optimization method to optimize Eq. 1, and denote

$$
\begin{equation*}
J(\mathbf{A}, \mathbf{B}, \mathbf{E})=\frac{1}{2}\|\mathbf{X}-\mathbf{X A B}-\mathbf{E}\|_{F}^{2}+\lambda\|\mathbf{E}\|_{1}+\frac{\beta}{2}\|\mathbf{A B}\|_{F}^{2}+\gamma \operatorname{tr}\left((\mathbf{A B})^{T} \mathbf{Q}\right) . \tag{2}
\end{equation*}
$$

Given \mathbf{E}, taking the derivative of $J(\mathbf{A}, \mathbf{B}, \mathbf{E})$ w.r.t. \mathbf{B}, and setting it to zero, we obtain

$$
\begin{equation*}
-\mathbf{A}^{T} \mathbf{X}^{T}(\mathbf{X}-\mathbf{X A B}-\mathbf{E})+\beta \mathbf{A}^{T} \mathbf{A} \mathbf{B}+\gamma \mathbf{A}^{T} \mathbf{Q}=0 \tag{3}
\end{equation*}
$$

Eq. 3 can be rewritten as follows:

$$
\begin{equation*}
\mathbf{B}=\left(\mathbf{A}^{T} \mathbf{S}_{1} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{S}_{2} \tag{4}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathbf{S}_{1}=\mathbf{X}^{T} \mathbf{X}+\beta \mathbf{I} \\
& \mathbf{S}_{2}=\left(\mathbf{X}^{T}(\mathbf{X}-\mathbf{E})-\gamma \mathbf{Q}\right) \tag{5}
\end{align*}
$$

By substituting Eq. 4 back into Eq. 1, the subproblem on \mathbf{A} becomes

$$
\begin{equation*}
\min _{\mathbf{A}} \frac{1}{2}\left\|(\mathbf{X}-\mathbf{E})-\mathbf{X A}\left(\mathbf{A}^{T} \mathbf{S}_{1} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{S}_{2}\right\|_{F}^{2}+\frac{\beta}{2}\left\|\mathbf{A}\left(\mathbf{A}^{T} \mathbf{S}_{1} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{S}_{2}\right\|_{F}^{2}+\gamma \operatorname{tr}\left(\mathbf{S}_{2}^{T} \mathbf{A}\left(\mathbf{A} \mathbf{S}_{1}^{T} \mathbf{A}^{T}\right)^{-1} \mathbf{A}^{T} \mathbf{Q}\right) . \tag{6}
\end{equation*}
$$

Note that $\|\mathbf{x}\|_{F}^{2}=\operatorname{tr}\left(\mathbf{x}^{T} \mathbf{x}\right)$, we have

$$
\begin{align*}
\min _{\mathbf{A}} \operatorname{tr}\left((\mathbf{X}-\mathbf{E})^{T}(\mathbf{X}-\mathbf{E})-2(\mathbf{X}-\mathbf{E})^{T} \mathbf{X}^{T} \mathbf{A}\left(\mathbf{A}^{T} \mathbf{S}_{1} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{S}_{2}+\mathbf{S}_{2}^{T} \mathbf{A}\left(\mathbf{A}^{T} \mathbf{S}_{1} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{X} \mathbf{X}^{T} \mathbf{A}\left(\mathbf{A}^{T} \mathbf{S}_{1} \mathbf{A}\right)^{-1}\right. \tag{7}\\
\left.\mathbf{A}^{T} \mathbf{S}_{2}\right)+\beta \operatorname{tr}\left(\mathbf{S}_{2}^{T} \mathbf{A}\left(\mathbf{A}^{T} \mathbf{S}_{1} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{A}\left(\mathbf{A}^{T} \mathbf{S}_{1} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{S}_{2}\right)+2 \gamma \operatorname{tr}\left(\mathbf{S}_{2}^{T} \mathbf{A}\left(\mathbf{A} \mathbf{S}_{1}^{T} \mathbf{A}^{T}\right)^{-1} \mathbf{A}^{T} \mathbf{Q}\right)
\end{align*}
$$

Merging the third and the fourth term, we have

$$
\begin{equation*}
\min _{\mathbf{A}} \operatorname{tr}\left((\mathbf{X}-\mathbf{E})^{T}(\mathbf{X}-\mathbf{E})-2(\mathbf{X}-\mathbf{E})^{T} \mathbf{X}^{T} \mathbf{A}\left(\mathbf{A}^{T} \mathbf{S}_{1} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{S}_{2}+\mathbf{S}_{2}^{T} \mathbf{A}\left(\mathbf{A}^{T} \mathbf{S}_{1} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{S}_{2}\right)+2 \gamma \operatorname{tr}\left(\mathbf{S}_{2}^{T} \mathbf{A}\left(\mathbf{A} \mathbf{S}_{1}^{T} \mathbf{A}^{T}\right)^{-1} \mathbf{A}^{T} \mathbf{Q}\right) \tag{8}
\end{equation*}
$$

[^0]Substituting first \mathbf{S}_{2} to $\mathbf{X}^{T}(\mathbf{X}-\mathbf{E})-\gamma \mathbf{Q}$ in the third term of Eq. 8 and employing $\operatorname{tr}\left(\mathbf{x}^{T}\right)=\operatorname{tr}(\mathbf{x})$, we obtain

$$
\begin{equation*}
\min _{\mathbf{A}} \operatorname{tr}\left((\mathbf{X}-\mathbf{E})^{T}(\mathbf{X}-\mathbf{E})-(\mathbf{X}-\mathbf{E})^{T} \mathbf{X}^{T} \mathbf{A}\left(\mathbf{A}^{T} \mathbf{S}_{1} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{S}_{2}-\gamma \mathbf{Q}^{T} \mathbf{A}\left(\mathbf{A}^{T} \mathbf{S}_{1} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{S}_{2}\right)+2 \gamma \operatorname{tr}\left(\mathbf{S}_{2}^{T} \mathbf{A}\left(\mathbf{A} \mathbf{S}_{1}^{T} \mathbf{A}^{T}\right)^{-1} \mathbf{A}^{T} \mathbf{Q}\right), \tag{9}
\end{equation*}
$$

and it equals to

$$
\begin{equation*}
\min _{\mathbf{A}} \operatorname{tr}\left((\mathbf{X}-\mathbf{E})^{T}(\mathbf{X}-\mathbf{E})-(\mathbf{X}-\mathbf{E})^{T} \mathbf{X}^{T} \mathbf{A}\left(\mathbf{A}^{T} \mathbf{S}_{1} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{S}_{2}+\gamma \mathbf{Q}^{T} \mathbf{A}\left(\mathbf{A}^{T} \mathbf{S}_{1} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{S}_{2}\right) . \tag{10}
\end{equation*}
$$

Thus, we have

$$
\begin{equation*}
\min _{\mathbf{A}} \operatorname{tr}\left((\mathbf{X}-\mathbf{E})^{T}(\mathbf{X}-\mathbf{E})-\mathbf{S}_{2}^{T} \mathbf{A}\left(\mathbf{A}^{T} \mathbf{S}_{1} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{S}_{2}\right) . \tag{11}
\end{equation*}
$$

According to Eq. 11, we utilize the fact that $\operatorname{tr}(\mathbf{x y})=\operatorname{tr}(\mathbf{y x})$, and solve \mathbf{A} by the following program:

$$
\begin{equation*}
\mathbf{A}^{*}=\arg \max _{\mathbf{A}} \operatorname{tr}\left\{\left(\mathbf{A}^{T} \mathbf{S}_{1} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{S}_{2} \mathbf{S}_{2}^{T} \mathbf{A}\right\} . \tag{12}
\end{equation*}
$$

Eq. 12 can be transformed to a generalized eigen-problem. Its global optimal solution is the top r eigenvectors of $\mathbf{S}_{1}^{\dagger} \mathbf{S}_{2} \mathbf{S}_{2}^{T}$ corresponding to the nonzero eigenvalues, where \mathbf{S}_{1}^{\dagger} denotes the pseudo-inverse of \mathbf{S}_{1}.

Given \mathbf{A} and \mathbf{B}, the matrix \mathbf{E} can be solved by the soft-threshold (or shrinkage) method in [1]:

$$
\begin{equation*}
\mathbf{E}^{*}=\arg \min _{\mathbf{E}} \lambda\|\mathbf{E}\|_{1}+\frac{1}{2}\|\mathbf{E}-(\mathbf{X}-\mathbf{X A B})\|_{F}^{2} . \tag{13}
\end{equation*}
$$

A sub-optimal solution can be obtained by alternating between the updating of $\{\mathbf{A}, \mathbf{B}\}$ and the updating of \mathbf{E}

References

[1] Z. Lin, A. Ganesh, J. Wright, M. Chen, L. Wu, and Y. Ma. Fast convex optimization algorithms for exact recovery of a corrupted low-rank matrix. UIUC Technical Report UILU-ENG-09-2214, July 2009.

[^0]: *Corresponding author is Liang Lin.

