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A. Proof that dmax(p) Attains a Local Minimum at p = p�

The standard way of showing that a C1 function attains its minimum at a point is by showing a vanishing first-order

derivative at that point, in our case, ∂dmax

∂p p=p� . However, as we show below, dmax(p) is not differentiable at p = p�; we

will therefore show that the left and right derivatives of dmax(p) at p� are, respectively, negative and positive. We obtain the

derivative
∂dmax(p)

∂p
by using the equation

p = ρin · ψ(r�, rmin(p)+δ, dmax(p)) · p� + ... (A.1)

ρout ·
(
π · (rmin(p)+δ)2 − ψ(r�, rmin(p)+δ, dmax(p))

)
· (1− p�),

which was obtained by plugging pt(rmin(p)+δ) = p from inequality (13) into equation (15). This can be rewritten as the

simplified expression

ψ(r�, rmin(p)+δ, dmax(p)) =
p− π(rmin(p) + δ)2(1− p�) · ρout

p� · ρin − (1− p�) · ρout
Δ
= G(p).

Since ψ is not easily invertible (see (A.7) below), we define the implicit equation F (p, dmax(p)) = 0 with

F (p, d) = ψ(r�, rmin(p)+δ, d)−G(p) (A.2)

and use implicit differentiation
∂dmax(p)

∂p
= − ∂F/∂p

∂F/∂dmax(p)
. (A.3)

A.1. Calculating rmin(p)

Under the assumption of uniform fin and fout, we further assume

ρin · p� > ρout · (1− p�) (A.4)
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Figure A.1. Visual analysis of (A.18) for δ → 0. Left: the region where (A.18) holds, and therefore dmax(p) attains a local minimum

(identical to Figure 4 in the paper). Center and Right: color-mapped values of the left and right hand sides of (A.18), accordingly. The

black regions under the curve p� = π · r�
2

(in magenta), are locations where the left hand side of (A.18) is undefined.

(otherwise there is a transformation more prominent than t�). The best attainable error rmin(p) can now be directly computed,

and is shown to be

rmin(p) =

⎧⎨
⎩
r� ·

√
p/p� p ≤ p�√

p−p�

πρout
+ r�2 p ≥ p�

(A.5)

Note that the two cases p ≤ p� and p ≥ p� coincide at p = p�, sharing the value rmin(p
�) = r� (obtained, e.g., by the

transformation t�). Let us look at each of the two cases:

The case p ≥ p� here we have r� < rmin(p), and following A.4 we get that Br�(t
�) ⊂ Brmin(p)(t) for any transformation

t that obtains rmin(p). As rmin(p) is rather larger than r�, its size depends on the distribution ρout, resulting in

ρout · (πrmin(p)
2 − πr�2) = p− p� . We can then extract

rmin(p) =

√
p− p�

ρoutπ
+ r�2 (A.6)

The case p < p� In this case p is an underestimate of p� and therefore rmin(p) < r�, and similarly Br�(t
�) ⊃ Brmin(p)(t).

Since p/p� = πrmin(p)
2
/πr�2, we obtain in this case that rmin(p) = r� ·

√
p/p�.

A.2. The function ψ

ψ returns the intersection area of two circles with radii r1 and r2, whose centers are d apart. The range of interest is

|r1 − r2| < d < r1 + r2, of which there is either full or empty intersection. The formula for ψ was taken from equation (14)

in [2].

ψ(r1, r2, d) = r1
2 cos−1

(
d2 + r1

2 − r2
2

2dr1

)
+ r2

2 cos−1

(
d2 − r1

2 + r2
2

2dr2

)
(A.7)

−
√
(d+ r1 − r2) (d− r1 + r2) (r1 − d+ r2) (d+ r1 + r2)

2

The partial derivatives of ψ, w.r.t. d as well as r1 (and r2 similarly) are

∂ψ(r1, r2, d)

∂d
= −1

d

√
(d+ r1 − r2) (d− r1 + r2) (r1 − d+ r2) (d+ r1 + r2) (A.8)

∂ψ(r1, r2, d)

∂r1
= 2r1 cos

−1

(
d2 + r1

2 − r2
2

2dr1

)
(A.9)



A.3. Derivatives of F (p, dmax(p))

The derivative w.r.t. dmax(p) given by
∂F

∂dmax(p)
=

∂ψ

∂d
d=dmax(p) (A.10)

is always negative, as the derivative ∂ψ
∂d

is always negative (since the circles intersection area decreases as d increases). Next,

to get the derivative w.r.t. p we first derive rmin(p)

∂rmin(p)

∂p
=

⎧⎨
⎩

r�

2p�
√

p
p�

p ≤ p�(
2πρout

√
r�2 + p−p�

πρout

)−1

p ≥ p�

p→p�

−−−−→

⎧⎪⎨
⎪⎩
r�/2p�

(2πρoutr
�)

−1

(A.11)

then we derive G(p)

∂G

∂p
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

πρoutr
�(δ+r�

√
p
p� )(p�−1)

p�
√

p
p�

+1

p�
·ρin−(1−p�)·ρout

p ≤ p�

(
δ+

√
r�2+

p−p�

πρout

)
(p�−1)√

r�2+
p−p�

πρout

+1

p�
·ρin−(1−p�)·ρout

p ≥ p�

p→p�

−−−−→

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

πρoutr
�(δ+r�)(p�−1)

p�
+1

p�
·ρin−(1−p�)·ρout

(δ+r�)(p�−1)
r�

+1

p�
·ρin−(1−p�)·ρout

(A.12)

and finally the function F
∂F

∂p
=

∂ψ

∂r1
r1=(rmin(p)+δ) ·

∂rmin(p)

∂p
− ∂G

∂p
. (A.13)

Plugging (A.11) and (A.12) into (A.13) we get

∂F

∂p p=p�− = cos−1

(
dmax(p)

2
+ δ2 + 2r�δ

2dmax(p) (δ + r�)

)
r� (δ + r�)

p�
− πρoutr

� (δ + r�) (p� − 1) + p�

p� (p� · ρin − (1− p�) · ρout)
(A.14)

∂F

∂p p=p�+ = cos−1

(
dmax(p)

2
+ δ2 + 2δr�

2dmax(p) (δ + r�)

)
(δ + r�)

πρoutr�
− (p� − 1) (δ + r�) + r�

r� (p� · ρin − (1− p�) · ρout)
(A.15)

A.4. Ranges where the solution is valid

For the minimum to exist, we need to show that ∂F
∂p

is positive for p ≥ p� and negative for p ≤ p�, .i.e.

∂F

∂p p=p�− < 0 and
∂F

∂p p=p�+ > 0 (A.16)

After plugging in the values of ρin and ρout into (A.14) and (A.15) and some simplifications, we respectively obtain

1

π
cos−1

(
dmax(p)

2
+ δ2 + 2r�δ

2dmax(p) (δ + r�)

)
<

r�
(
p� − π r�2 − π δ r� + π δ p� r�

)
(δ + r�)

(
p� − π r�2

) (A.17)

1

π
cos−1

(
dmax(p)

2
+ δ2 + 2δr�

2dmax(p) (δ + r�)

)
>

π r�2 (δ p� − δ + p� r�)

(δ + r�)
(
p� − π r�2

) (A.18)

Let us examine the case of δ → 0, where the condition (A.17) always holds as the righthand side approaches 1, which is

always larger than cos−1 (upper bounded by π/2 for positive input). The condition in (A.18) is a little more subtle, and

Figure A.1 shows its left and right hand sides, for δ → 0. The regions in Figure 4 in the paper originate form this analysis.
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Figure B.2. This is a replica of Figure 6 from the paper.

B. Discussion on the Interval where Theoretical and Empirical Curves Match (Figure 6)

As can be seen in Figure 6 in the paper (also shown as Figure B.2 here), there is an evident match between theory and

practice at a certain interval around the true inlier rate p�, but the extent of this interval diminishes with the increase in δ. As

done above in Section A.1 for rmin(p), we split the discussion into two cases:

The case p < p�: As p decreases below a certain value which we denote by p1, a disk of radius rmin(p)+δ can have a

probability of p even if it does not intersect Br∗(T
∗). Therefore, beyond the point p1 the value Vδ(p) will increase faster than

the theoretic curve, and Ωδ(p) gradually captures the whole space T .

The value of p1 can be roughly calculated. Once again, assuming uniform outlier density ρout, we obtain that p1 =
ρout · π · (rmin(p)+δ)2, meaning that p1 grows with δ, as can be observed in the figure. We did not model this fact in our

formulation therefore it happens only in the empirical plot and not in the theoretic one.

The case p > p�: This case is slightly more involved compared to the previous. At large, it happens due to boundary

effects, where the circles that we analyze exceed the image boundaries. Specifically, there are two different deviations from

the theoretical analysis. First, as p increases, more of the disks of radius rmin(p)+ δ will capture areas that exceed the

boundaries of I2, and in these areas the match probability density is zero. Hence, the probability that they capture will not

grow with p as expected, and therefore less transformations will belong to Ωδ(p). This effect happens earlier for larger δ, as

the radii rmin(p)+δ are larger.

Second, a similar effect happens specifically to balls around T ∗(q1). As p grows, once these balls exceed the boundaries

of I2, the best error rmin(p) might be obtained by transformations other than t�, especially ones that map points to a more

central area of I2. Moreover, for large enough values of δ, as p grows the balls of radius rmin(p)+ δ capture the entire

distribution (which is limited to the image bounds) and Ωδ(p) gradually captures the whole space T (as can be seen e.g. in

the red curve).

C. Additional 2D-Homography Examples (for experiment of Section 4.3)

In this section we present visualizations similar to Figure 8 in the paper, that accompany the 2D-Homography results we

report in table 1. Figures C.3, C.4 and C.5 show results on pairs 1–4, 1–5 and 1–6 respectively, which are the three most

difficult image pairs from each of the sequences in [1].
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Figure C.3. Results for Frames 1-4 on five sequences from [1]. Sequence names from top to bottom are: ‘wall’,

‘bark’, ‘graffiti’, ‘graffiti 4’ and ‘graffiti 5’. In each row from the left: Image I1 with inliers (blue) and outliers(red) ; Image

I2 like the former, along with the ground-truth and GMD map of I1 (green and magenta, respectivley); IRE prediction p̂
(black dashed line) as the minimal value of vε(p) (blue, log-scale axis) ; Final results: The result of GMD (black circle) and

the result of multiple USAC runs for different thresholds (red circles), shown against the CDF (green curve) of match-errors

w.r.t. the ground-truth transformation. Missing red line means failed USAC runs.
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Figure C.4. Results for Frames 1-5 on five sequences from [1]. Sequence names from top to bottom are: ‘wall’,

‘bark’, ‘graffiti’, ‘graffiti 4’ and ‘graffiti 5’. In each row from the left: Image I1 with inliers (blue) and outliers(red) ; Image

I2 like the former, along with the ground-truth and GMD map of I1 (green and magenta, respectivley); IRE prediction p̂
(black dashed line) as the minimal value of vε(p) (blue, log-scale axis) ; Final results: The result of GMD (black circle) and

the result of multiple USAC runs for different thresholds (red circles), shown against the CDF (green curve) of match-errors

w.r.t. the ground-truth transformation. Missing red line means failed USAC runs.
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Figure C.5. Results for Frames 1-6 on five sequences from [1]. Sequence names from top to bottom are: ‘wall’,

‘bark’, ‘graffiti’, ‘graffiti 4’ and ‘graffiti 5’. In each row from the left: Image I1 with inliers (blue) and outliers(red) ; Image

I2 like the former, along with the ground-truth and GMD map of I1 (green and magenta, respectivley); IRE prediction p̂
(black dashed line) as the minimal value of vε(p) (blue, log-scale axis) ; Final results: The result of GMD (black circle) and

the result of multiple USAC runs for different thresholds (red circles), shown against the CDF (green curve) of match-errors

w.r.t. the ground-truth transformation. Missing red line means failed USAC runs.


