
GRSA: Generalized Range Swap Algorithm for the Efficient

Optimization of MRFs

1. Proof of Theorem 1

Before proving Theorem 1, we first give the following

lemmas and the definition of submodular set.

Lemma 1. For b1, b2 > 0, the following conclusion holds.

a1
b1

≥
a2
b2

⇔
a1
b1

≥
a1 + a2
b1 + b2

≥
a2
b2

. (1)

The proof is straightforward and we omit it.

Lemma 2. Assuming that function g(x) is convex on [a, b]
and there are three points x1, x, x2 ∈ [a, b] satisfying x1 >
x > x2, there is

g(x1)− g(x)

x1 − x
≥

g(x1)− g(x2)

x1 − x2

≥
g(x)− g(x2)

x− x2

. (2)

Proof. Since x1 > x > x2, there exists λ ∈ (0, 1) satisfy-

ing x = (1− λ)x1 + λx2. Then by the definition of convex

function, there is (1− λ)g(x1) + λg(x2) ≥ g(x) and thus

(1− λ)(g(x1)− g(x)) ≥ λ(g(x)− g(x2)) (3)

Considering that x1 > x2 and 0 < λ < 1, we can divide

λ(1− λ)(x1 − x2) on both sides of (3) and obtain

g(x1)− g(x)

λ(x1 − x2)
≥

g(x)− g(x2)

(1− λ)(x1 − x2)
(4)

g(x1)− g(x)

x1 − x
≥
g(x)− g(x2)

x− x2

. (5)

At last, the conclusion (2) can be proved by applying Lem-

ma 1 to (5).

Lemma 3. Assuming that g(x) is convex on [a, b] and there

are four points x1, x2, x3, x4 ∈ [a, b] satisfying x1 > x3 ≥
x4 and x1 ≥ x2 > x4, there is

g(x1)− g(x3)

x1 − x3

≥
g(x2)− g(x4)

x2 − x4

. (6)

Proof. 1. If x2 = x3, the conclusion is straightforward

by Lemma 2.

2. If x2 > x3, there is x1 ≥ x2 > x3 ≥ x4. We first

consider the case where x1 > x2 > x3 > x4 and can

use Lemma 2 to obtain (6) by

g(x1)− g(x3)

x1 − x3

≥
g(x2)− g(x3)

x2 − x3

≥
g(x2)− g(x4)

x2 − x4

.

For the case where x1 = x2 > x3 > x4, the right half

of the above inequality holds and we can obtain (6) by

replacing x2 with x1. The case where x1 > x2 >
x3 = x4 can be obtained in a similar way while the

case where x1 = x2 > x3 = x4 is straightforward.

3. If x2 < x3, there is x1 > x3 > x2 > x4. Using

Lemma 2, we can obtain (6) by

g(x1)− g(x3)

x1 − x3

≥
g(x3)− g(x2)

x3 − x2

≥
g(x2)− g(x4)

x2 − x4

Therefore, the proof of Lemma 3 is competed.

Lemma 4. Given a function g(x) (x= |α−β|) on domain

X = [0, c], assume g(x) is locally convex on interval Xs =
[a, b] (0 ≤a<b≤ c), and it satisfies a{g(a+1)− g(a)} ≥
g(a)− g(0). Then we have

g(x1)− g(x3)

x1 − x3

≥
g(x2)− g(0)

x2

(7)

where x1, x2, x3 ∈ Xs where x3 < x1 and x2 < x1.

Proof. Since x1 > x3 ≥ a and x1 ∈ N, we have x1 ≥
a+ 1 > a. Then considering that x1 > x3 ≥ a, we can use

Lemma 3 to obtain

g(x1)− g(x3)

x1 − x3

≥
g(a+ 1)− g(a)

a+ 1− a
≥

g(a)− g(0)

a
, (8)

where the second inequality comes from a{g(a + 1) −
g(a)} ≥ g(a)− g(0).

If x2 = a, the conclusion is obtained from (8). Other-

wise, there is x1 > x2 > a and x1 > x3 ≥ a. Using

Lemma 3, we obtain

g(x1)− g(x3)

x1 − x3

≥
g(x2)− g(a)

x2 − a
. (9)
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Combining (8) and (9), we can obtain

g(x1)− g(x3)

x1 − x3

≥max

{

g(x2)− g(a)

x2 − a
,
g(a)− g(0)

a

}

≥
g(x2)− g(a) + g(a)− g(0)

x2 − a+ a

=
g(x2)− g(0)

x2

,

where the second inequality is due to Lemma 1 and this

completes the proof.

Definition 1. Given a pairwise potential θ(α, β), we call

Ls a submodular set, if it satisfies

θ(li+1,lj)−θ(li+1,lj+1)−θ(li,lj)+θ(li,lj+1) ≥ 0 (10)

for any pair of labels li, lj ∈ Ls(1≤ i, j<m).

Theorem 1. Given a pairwise function θ(α, β)=g(x) (x=
|α−β|) on domain X = [0, c], assume there is an interval

Xs = [a, b] (0 ≤ a < b ≤ c) satisfying: (i) g(x) is locally

convex on [a, b], and (ii) a{g(a+1)− g(a)} ≥ g(a)− g(0).
Then Ls={l1, · · · , lm} is a submodular subset, if |li−lj |∈
[a, b] for any pair of labels li, lj ∈Ls.

Proof. Since θ(α, β) is semimetric and satisfies θ(α, β) =
θ(β, α), we only consider li, li+1, lj , lj+1 ∈ Ls where i ≥
j. Let

x1 = li+1 − lj , x2 = li+1 − lj+1,

x3 = li − lj , x4 = li − lj+1

For i ≥ j, we have xi > xj , and x1−x2 = x3−x4. We can

define

λ =
x3 − x4

x1 − x4

=
x1 − x2

x1 − x4

, (0 < λ < 1) (11)

then, we get

x3 = λx1+(1−λ)x4, x2 = λx4+(1−λ)x1. (12)

If a = 0, i.e. Xs = [0, b] we have x1, x2, x3, x4 ∈ Xs

according to the assumption in Theorem 1. Since d(x) is

convex on Xs, with Eq. (12) we obtain

g(x3) ≤ λg(x1) + (1− λ)g(x4),

g(x2) ≤ λg(x4) + (1− λ)g(x1)
(13)

Summing the two equations in Eq. (13), we can get

g(x2) + g(x3) ≤ g(x1) + g(x4)

Thus, θ(li+1,lj)− θ(li+1,lj+1)− θ(li,lj)+ θ(li,lj+1) ≥ 0 is

satisfied for any pair of label li, lj ∈ Ls.

If a > 0 (Xs = [a, b]), we prove the theorem in three

cases:

1) i = j; 2) i > j + 1; 3) i = j + 1.

1) When i = j, we have

θ(li+1,lj)− θ(li+1,lj+1)− θ(li,lj) + θ(li,lj+1)

=θ(li+1,li)− θ(li+1,li+1)− θ(li,li) + θ(li,li+1)

=θ(li+1,li)− 0− 0 + θ(li,li+1)

=2θ(li+1,li) ≥ 0

2) When i > j+1, we have x1, x2, x3, x4 ∈ Xs accord-

ing to the assumption in Theorem 1. Since d(x) is convex

on Xs, with Eq. (12) we obtain

g(x3) ≤ λg(x1) + (1− λ)g(x4),

g(x2) ≤ λg(x4) + (1− λ)g(x1)
(14)

Summing the two equations in Eq. (14), we can get

g(x2) + g(x3) ≤ g(x1) + g(x4)

Thus, θ(li+1,lj)− θ(li+1,lj+1)− θ(li,lj)+ θ(li,lj+1) ≥ 0 is

satisfied for any pair of label li, lj ∈ Ls and i > j + 1.

3) When i = j + 1, we have

x1 = lj+2 − lj , x2 = lj+2 − lj+1,

x3 = lj+1 − lj , x4 = 0

Thus, we have x1 = x2 + x3, and x1, x2, x3 ∈ Xs but

x4 /∈ Xs.

With Lemma 4, we have

g(x1)− g(x3)

x1 − x3

≥
g(x2)− g(0)

x2

. (15)

Thus we can get

g(x2) + g(x3) ≤ g(x1) + g(x4)

and θ(li+1,lj)− θ(li+1,lj+1)−θ(li,lj)+θ(li,lj+1) ≥ 0 is sat-

isfied for any pair of labels li, lj ∈ Ls and i = j + 1.

Therefore, θ(li+1,lj)−θ(li+1,lj+1)−θ(li,lj)+θ(li,lj+1) ≥ 0
is satisfied for any pair of labels li, lj ∈ Ls. The proof is

completed.

Corollary 1 (Thereom 1). Assuming the interval [a, b] is a

candidate interval, then {α, α+ x1, α+ x1 + x2, · · · , α+
x1+· · ·+xm} ⊆ L is a submodular set, if x1, .., xm ∈ [a, b]
and x1 + · · ·+ xm≤b.

Proof. Let Ls = {α, α + x1, α + x1 + x2, · · · , α + x1 +
· · · + xm}. We consider a pair of labels α1 and α2, which

can be any pair of labels chosen in Ls. According to the

definition, there always exist p, q (1 ≤ p, q ≤ m) such that

|α1 − α2| = xp + xp+1 + · · ·+ xq.
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Since xi ∈ [a, b] for ∀i ∈ [p, q], we have |α1 − α2| ≥ a.

Since x1+· · ·+xm≤b, we have xp+xp+1+· · ·+xq ≤ b.
Thus, we have |α1 − α2| ∈ [a, b] for any pair of labels

α1, α2 ∈ Ls

Thus, Ls is a submodular set according to Theorem 1.
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