GRSA: Generalized Range Swap Algorithm for the Efficient
Optimization of MRF's

1. Proof of Theorem 1

Before proving Theorem 1, we first give the following
lemmas and the definition of submodular set.

Lemma 1. For by, by > 0, the following conclusion holds.

a; _ ap+az

aq >CL2 o
b1 T b1+ b

b1 — be

> ey

as

by
The proof is straightforward and we omit it.

Lemma 2. Assuming that function g(x) is convex on [a, b]

and there are three points x1,x, 2o € [a,b] satisfying x1 >
T > X9, there is
g(z1) —g(z2) _ g(z) — g(z2)

> > .
1 — T2 Xr — X9

g(x1) — g(x)
xr1 —

2

Proof. Since x1 > x > x, there exists A € (0, 1) satisfy-
ing x = (1 — A)x1 + Aza. Then by the definition of convex
function, there is (1 — A)g(z1) + Ag(z2) > g(«) and thus

(1 =N (g(z1) = g(x)) = Mg(z) — g(x2))

Considering that z; > 22 and 0 < A < 1, we can divide
A(1 — M) (x1 — x2) on both sides of (3) and obtain

3)

g(x1) — g(x) g(x) — g(x2)
N1 —19) — (= (21 — 72) @)
g(x1) — g(x) Zg(ﬂf) —g(z2) )

r1 — Tr — T2

At last, the conclusion (2) can be proved by applying Lem-
ma 1 to (5). O]

Lemma 3. Assuming that g(x) is convex on [a, b] and there
are four points x1, 2,23, x4 € [a,b] satisfying x1 > x5 >
x4 and T > xo > X4, there is

g9(x1) — g(x3)
1 — I3

> g(w2) — g(4)

. (©6)

Proof. 1. If xo = z3, the conclusion is straightforward
by Lemma 2.
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2. If &9 > x3, there is ©1 > xo > x3 > x4. We first
consider the case where 1 > x5 > x3 > x4 and can
use Lemma 2 to obtain (6) by

g(r2) — g(x3)
X9 — I3

g(x1) - g(as)
xr1 — I3 -

S 9(x2) — g(x4)
- To — T4

For the case where x1 = x5 > x3 > x4, the right half
of the above inequality holds and we can obtain (6) by
replacing xo with ;. The case where ©1 > zo >
T3 = x4 can be obtained in a similar way while the
case where x1 = x9 > x3 = x4 is straightforward.

. If 29 < m3, there is 1 > x3 > xy > x4. Using
Lemma 2, we can obtain (6) by

g(z3) — g(z2)
r3 — T2

gle1) — glas) _
T — I3 -

S 9(x2) — g(x4)
- To — X4

Therefore, the proof of Lemma 3 is competed. O

Lemma 4. Given a function g(x) (x =|a—|) on domain
X =0, ], assume g(x) is locally convex on interval X s =
[a,b] (0 <a<b< ¢), and it satisfies a{g(a+1) — g(a)} >
g(a) — g(0). Then we have

g(x2) —g(0)
T

glx1) - glas)
xr1 — I3 -

)

where x4, xo, x3 € X where x3 < x1 and x9 < x7.

Proof. Since 1 > x3 > a and x; € N, we have z; >
a + 1 > a. Then considering that z; > x3 > a, we can use
Lemma 3 to obtain

sla+1) —g(a) _ gla)—g(0)
a+l—a ~ a ’

g(a1) —glws)
xr1 — I3 -

®)

where the second inequality comes from a{g(a + 1) —
g(a)} = g(a) — g(0).

If x5 = a, the conclusion is obtained from (8). Other-
wise, there is 1 > xo > a and 1 > x3 > a. Using
Lemma 3, we obtain

g(z1) — g(a3)
Tr1 — I3

9(z2) — g(a)

> 9



Combining (8) and (9), we can obtain

g@n)g@@)>nmx{mwﬂzﬂw7g@)g®)}
r1 — I3 T2 —Q a

_ 9(x2) = gla) + g(a) — 9(0)

- o —a+a

:9(332) —9(0)’

where the second inequality is due to Lemma 1 and this
completes the proof. O

Definition 1. Given a pairwise potential 0(«, ), we call
L a submodular set, if it satisfies

O(lia,l5) = O0(lia L) —0(1i, 1) +0(lisla) >
for any pair of labels l;, |; € L(1<4,j<m).

Theorem 1. Given a pairwise function 0(a, ) =g(z) (x=
|ae—B|) on domain X = [0, c|, assume there is an interval
Xs =la,b] (0 <a<b< ¢ satisfying: (i) g(x) is locally
convex on [a, b, and (ii) a{g(a+1) — g(a)} > g(a) — g(0).
Then Lo={l1,- -+ ,l,,} is a submodular subset, if |l;—1;| €
[a, b] for any pair of labels ;,1; € L.

0 (10)

Proof. Since 0(«, 3) is semimetric and satisfies 6(«, 3)
6(5, a), we only consider I;,l;41,1;,l;41 € Ls where i
j. Let

>

Ty = li+1 - lj7 T2 = li+1 - lj+1,

.Z‘gzli—lj, .T4:li—lj+1
For ¢ > j, we have x; > x;, and 1 —x2 = w3—x4. We can
define

A=DBTT_TTT g a1y (1)
T1 — T4 T1 — T4
then, we get
Tr3 = )\JC1—|—(1—)\)£ZJ4, T = /\I4—|—(1—)\)I1 (12)

Ifa=0,ie X; =100 wehave 1, 29,23, 74 € X,
according to the assumption in Theorem 1. Since d(z) is
convex on X, with Eq. (12) we obtain

3) < Ag(z1
) < Ag(zq) +

g(x

13
g(@s (13)

Summing the two equations in Eq. (13), we can get

g(x2) + g(x3) < g(x1) + g(74)

ThUS, 9(lz'+17lj) — g(li—Hvlj—H) - g(ll,lj) +9(li,lj+1) 2 0 is
satisfied for any pair of label I;, [; € L.
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If a > 0 (X5 = [a,b]), we prove the theorem in three
cases:
Di=j;2i>j+1;3)i=j+1.

1) When ¢ = j, we have

Olia,ly) — O, lina) — 0L 1) + 0(lislia)
=0(liy1,l;) — Ol lia) — 0(lisli) + 0L lia)
=0(lit1,l;) —0 =04+ 0(l;,li11)
9( i1, ) >0

2) When¢ > j+ 1, we have z1, z2, 23, x4 € X, accord-
ing to the assumption in Theorem 1. Since d(x) is convex
on X, with Eq. (12) we obtain

9(x3) < Ag(z1) + (1= A)g(aa),
9(x) < Ag(za) + (1= A)g(a1)

Summing the two equations in Eq. (14), we can get

(14)

9(w2) + g(x3) < g(z1) + g(w4)

Thus, 0(li1,l5) = 0l ) — O01;) +0(lila) = 0ds
satisfied for any pair of label ;, [; € L, and i > j + 1.
3) When ¢ = 5 + 1, we have

ry = lj+2 - lj, T2 = lj+2 - lj+1,
$3:lj+1—lj, $4:O
Thus, we have x1 = x9 + 3, and z1,x9, 23 € X, but
Ty ¢ XS.
With Lemma 4, we have
ﬂm)—ﬂ%)zg@ﬁ—gm) (15)
1 — T3 X9

Thus we can get
9(x2) + g(x3) < g(a1) + g(w4)

and 9(li+1,lj) — 9(li+1,lj+1)—9(li,lj)+9(li,lﬂ1) > ( is sat-
isfied for any pair of labels /;, [; € L, and 7 = j + 1.
Therefore, 0(li+1,lj)70(li+1,lj+1)ﬂ9(li,lj}+9(li,lj+1) Z 0
is satisfied for any pair of labels [;, [; € L. The proof is
completed. O

Corollary 1 (Thereom 1). Assuming the interval [a,b] is a

candidate interval, then {o, « + x1, 0 + ©1 + 22, -+ ,a +
X1+ +xm t C Lisasubmodular set, ifxy, .., T, € [a, b
and x1 + - + z,,, <b.

Proof. Let L = {o,a+z1,a+ 21 + 2, ,a+ 21 +

-+ 4 = }. We consider a pair of labels a; and a3, which
can be any pair of labels chosen in £5. According to the
definition, there always exist p, ¢ (1 < p,q < m) such that

lar — ao| = @p + Tpy1 + -+ + 24



Since x; € [a, b] for Vi € [p, q], we have |a; — az] > a.

Since £1+4- - -4x <b, wehave zp+-2p 11+ 424 < b.

Thus, we have |ay — as| € [a,b] for any pair of labels
a1, 00 € L

Thus, L is a submodular set according to Theorem 1.

O
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