GRSA: Generalized Range Swap Algorithm for the Efficient Optimization of MRFs

1. Proof of Theorem 1

Before proving Theorem 1, we first give the following lemmas and the definition of *submodular set*.

Lemma 1. For $b_1, b_2 > 0$, the following conclusion holds.

$$\frac{a_1}{b_1} \ge \frac{a_2}{b_2} \iff \frac{a_1}{b_1} \ge \frac{a_1 + a_2}{b_1 + b_2} \ge \frac{a_2}{b_2}.$$
 (1)

The proof is straightforward and we omit it.

Lemma 2. Assuming that function g(x) is convex on [a, b]and there are three points $x_1, x, x_2 \in [a, b]$ satisfying $x_1 > x > x_2$, there is

$$\frac{g(x_1) - g(x)}{x_1 - x} \ge \frac{g(x_1) - g(x_2)}{x_1 - x_2} \ge \frac{g(x) - g(x_2)}{x - x_2}.$$
 (2)

Proof. Since $x_1 > x > x_2$, there exists $\lambda \in (0, 1)$ satisfying $x = (1 - \lambda)x_1 + \lambda x_2$. Then by the definition of convex function, there is $(1 - \lambda)g(x_1) + \lambda g(x_2) \ge g(x)$ and thus

$$(1 - \lambda)(g(x_1) - g(x)) \ge \lambda(g(x) - g(x_2))$$
 (3)

Considering that $x_1 > x_2$ and $0 < \lambda < 1$, we can divide $\lambda(1-\lambda)(x_1-x_2)$ on both sides of (3) and obtain

$$\frac{g(x_1) - g(x)}{\lambda(x_1 - x_2)} \ge \frac{g(x) - g(x_2)}{(1 - \lambda)(x_1 - x_2)} \tag{4}$$

$$\frac{g(x_1) - g(x)}{x_1 - x} \ge \frac{g(x) - g(x_2)}{x - x_2}.$$
(5)

At last, the conclusion (2) can be proved by applying Lemma 1 to (5). $\hfill \Box$

Lemma 3. Assuming that g(x) is convex on [a, b] and there are four points $x_1, x_2, x_3, x_4 \in [a, b]$ satisfying $x_1 > x_3 \ge x_4$ and $x_1 \ge x_2 > x_4$, there is

$$\frac{g(x_1) - g(x_3)}{x_1 - x_3} \ge \frac{g(x_2) - g(x_4)}{x_2 - x_4}.$$
 (6)

Proof. 1. If $x_2 = x_3$, the conclusion is straightforward by Lemma 2.

2. If $x_2 > x_3$, there is $x_1 \ge x_2 > x_3 \ge x_4$. We first consider the case where $x_1 > x_2 > x_3 > x_4$ and can use Lemma 2 to obtain (6) by

$$\frac{g(x_1) - g(x_3)}{x_1 - x_3} \ge \frac{g(x_2) - g(x_3)}{x_2 - x_3} \ge \frac{g(x_2) - g(x_4)}{x_2 - x_4}$$

For the case where $x_1 = x_2 > x_3 > x_4$, the right half of the above inequality holds and we can obtain (6) by replacing x_2 with x_1 . The case where $x_1 > x_2 >$ $x_3 = x_4$ can be obtained in a similar way while the case where $x_1 = x_2 > x_3 = x_4$ is straightforward.

3. If $x_2 < x_3$, there is $x_1 > x_3 > x_2 > x_4$. Using Lemma 2, we can obtain (6) by

$$\frac{g(x_1) - g(x_3)}{x_1 - x_3} \ge \frac{g(x_3) - g(x_2)}{x_3 - x_2} \ge \frac{g(x_2) - g(x_4)}{x_2 - x_4}$$

Therefore, the proof of Lemma 3 is competed. \Box

Lemma 4. Given a function g(x) $(x = |\alpha - \beta|)$ on domain X = [0, c], assume g(x) is locally convex on interval $X_s = [a, b]$ $(0 \le a < b \le c)$, and it satisfies $a\{g(a+1) - g(a)\} \ge g(a) - g(0)$. Then we have

$$\frac{g(x_1) - g(x_3)}{x_1 - x_3} \ge \frac{g(x_2) - g(0)}{x_2} \tag{7}$$

where $x_1, x_2, x_3 \in X_s$ where $x_3 < x_1$ and $x_2 < x_1$.

Proof. Since $x_1 > x_3 \ge a$ and $x_1 \in \mathbb{N}$, we have $x_1 \ge a + 1 > a$. Then considering that $x_1 > x_3 \ge a$, we can use Lemma 3 to obtain

$$\frac{g(x_1) - g(x_3)}{x_1 - x_3} \ge \frac{g(a+1) - g(a)}{a+1 - a} \ge \frac{g(a) - g(0)}{a}, \quad (8)$$

where the second inequality comes from $a\{g(a + 1) - g(a)\} \ge g(a) - g(0)$.

If $x_2 = a$, the conclusion is obtained from (8). Otherwise, there is $x_1 > x_2 > a$ and $x_1 > x_3 \ge a$. Using Lemma 3, we obtain

$$\frac{g(x_1) - g(x_3)}{x_1 - x_3} \ge \frac{g(x_2) - g(a)}{x_2 - a}.$$
(9)

978-1-4673-6964-0/15/\$31.00 ©2015 IEEE

Combining (8) and (9), we can obtain

$$\begin{aligned} \frac{g(x_1) - g(x_3)}{x_1 - x_3} \geq & \max\left\{\frac{g(x_2) - g(a)}{x_2 - a}, \frac{g(a) - g(0)}{a}\right\}\\ \geq & \frac{g(x_2) - g(a) + g(a) - g(0)}{x_2 - a + a}\\ = & \frac{g(x_2) - g(0)}{x_2}, \end{aligned}$$

where the second inequality is due to Lemma 1 and this completes the proof. $\hfill \Box$

Definition 1. Given a pairwise potential $\theta(\alpha, \beta)$, we call \mathcal{L}_s a submodular set, if it satisfies

$$\theta(l_{i+1}, l_j) - \theta(l_{i+1}, l_{j+1}) - \theta(l_i, l_j) + \theta(l_i, l_{j+1}) \ge 0$$
 (10)

for any pair of labels l_i , $l_j \in \mathcal{L}_s(1 \le i, j < m)$.

Theorem 1. Given a pairwise function $\theta(\alpha, \beta) = g(x)$ ($x = |\alpha - \beta|$) on domain X = [0, c], assume there is an interval $X_s = [a, b]$ ($0 \le a < b \le c$) satisfying: (i) g(x) is locally convex on [a, b], and (ii) $a\{g(a+1) - g(a)\} \ge g(a) - g(0)$. Then $\mathcal{L}_s = \{l_1, \dots, l_m\}$ is a submodular subset, if $|l_i - l_j| \in [a, b]$ for any pair of labels $l_i, l_j \in \mathcal{L}_s$.

Proof. Since $\theta(\alpha, \beta)$ is semimetric and satisfies $\theta(\alpha, \beta) = \theta(\beta, \alpha)$, we only consider $l_i, l_{i+1}, l_j, l_{j+1} \in \mathcal{L}_s$ where $i \geq j$. Let

$$\begin{aligned} x_1 &= l_{i+1} - l_j, & x_2 &= l_{i+1} - l_{j+1}, \\ x_3 &= l_i - l_j, & x_4 &= l_i - l_{j+1} \end{aligned}$$

For $i \ge j$, we have $x_i > x_j$, and $x_1 - x_2 = x_3 - x_4$. We can define

$$\lambda = \frac{x_3 - x_4}{x_1 - x_4} = \frac{x_1 - x_2}{x_1 - x_4}, \quad (0 < \lambda < 1)$$
(11)

then, we get

$$x_3 = \lambda x_1 + (1 - \lambda) x_4, \quad x_2 = \lambda x_4 + (1 - \lambda) x_1.$$
 (12)

If a = 0, *i.e.* $X_s = [0, b]$ we have $x_1, x_2, x_3, x_4 \in X_s$ according to the assumption in Theorem 1. Since d(x) is convex on X_s , with Eq. (12) we obtain

$$g(x_3) \le \lambda g(x_1) + (1 - \lambda)g(x_4), g(x_2) \le \lambda g(x_4) + (1 - \lambda)g(x_1)$$
(13)

Summing the two equations in Eq. (13), we can get

$$g(x_2) + g(x_3) \le g(x_1) + g(x_4)$$

Thus, $\theta(l_{i+1}, l_j) - \theta(l_{i+1}, l_{j+1}) - \theta(l_i, l_j) + \theta(l_i, l_{j+1}) \ge 0$ is satisfied for any pair of label $l_i, l_j \in \mathcal{L}_s$.

If a > 0 ($X_s = [a, b]$), we prove the theorem in three cases:

1) i = j; 2) i > j + 1; 3) i = j + 1.1) When i = j, we have

$$\begin{aligned} \theta(l_{i+1}, l_j) &- \theta(l_{i+1}, l_{j+1}) - \theta(l_i, l_j) + \theta(l_i, l_{j+1}) \\ = \theta(l_{i+1}, l_i) - \theta(l_{i+1}, l_{i+1}) - \theta(l_i, l_i) + \theta(l_i, l_{i+1}) \\ = \theta(l_{i+1}, l_i) - 0 - 0 + \theta(l_i, l_{i+1}) \\ = 2\theta(l_{i+1}, l_i) \ge 0 \end{aligned}$$

2) When i > j + 1, we have $x_1, x_2, x_3, x_4 \in X_s$ according to the assumption in Theorem 1. Since d(x) is convex on X_s , with Eq. (12) we obtain

$$g(x_3) \le \lambda g(x_1) + (1 - \lambda)g(x_4), g(x_2) \le \lambda g(x_4) + (1 - \lambda)g(x_1)$$
(14)

Summing the two equations in Eq. (14), we can get

$$g(x_2) + g(x_3) \le g(x_1) + g(x_4)$$

Thus, $\theta(l_{i+1}, l_j) - \theta(l_{i+1}, l_{j+1}) - \theta(l_i, l_j) + \theta(l_i, l_{j+1}) \ge 0$ is satisfied for any pair of label $l_i, l_j \in \mathcal{L}_s$ and i > j + 1.

3) When i = j + 1, we have

$$\begin{aligned} x_1 &= l_{j+2} - l_j, & x_2 &= l_{j+2} - l_{j+1}, \\ x_3 &= l_{j+1} - l_j, & x_4 &= 0 \end{aligned}$$

Thus, we have $x_1 = x_2 + x_3$, and $x_1, x_2, x_3 \in X_s$ but $x_4 \notin X_s$.

With Lemma 4, we have

$$\frac{g(x_1) - g(x_3)}{x_1 - x_3} \ge \frac{g(x_2) - g(0)}{x_2}.$$
 (15)

Thus we can get

$$g(x_2) + g(x_3) \le g(x_1) + g(x_4)$$

and $\theta(l_{i+1}, l_j) - \theta(l_{i+1}, l_{j+1}) - \theta(l_i, l_j) + \theta(l_i, l_{j+1}) \ge 0$ is satisfied for any pair of labels $l_i, l_j \in \mathcal{L}_s$ and i = j + 1.

Therefore, $\theta(l_{i+1}, l_j) - \theta(l_{i+1}, l_{j+1}) - \theta(l_i, l_j) + \theta(l_i, l_{j+1}) \ge 0$ is satisfied for any pair of labels $l_i, l_j \in \mathcal{L}_s$. The proof is completed.

Corollary 1 (Thereom 1). Assuming the interval [a, b] is a candidate interval, then $\{\alpha, \alpha + x_1, \alpha + x_1 + x_2, \dots, \alpha + x_1 + \dots + x_m\} \subseteq \mathcal{L}$ is a submodular set, if $x_1, \dots, x_m \in [a, b]$ and $x_1 + \dots + x_m \leq b$.

Proof. Let $\mathcal{L}_s = \{\alpha, \alpha + x_1, \alpha + x_1 + x_2, \dots, \alpha + x_1 + \dots + x_m\}$. We consider a pair of labels α_1 and α_2 , which can be any pair of labels chosen in \mathcal{L}_s . According to the definition, there always exist $p, q \ (1 \le p, q \le m)$ such that

$$|\alpha_1 - \alpha_2| = x_p + x_{p+1} + \dots + x_q.$$

Since $x_i \in [a, b]$ for $\forall i \in [p, q]$, we have $|\alpha_1 - \alpha_2| \ge a$. Since $x_1 + \cdots + x_m \le b$, we have $x_p + x_{p+1} + \cdots + x_q \le b$. Thus, we have $|\alpha_1 - \alpha_2| \in [a, b]$ for any pair of labels $\alpha_1, \alpha_2 \in \mathcal{L}_s$ Thus, \mathcal{L}_s is a submodular set according to Theorem 1.