
Supplementary Material for

Deep Neural Networks are Easily Fooled:

High Confidence Predictions for Unrecognizable Images

A. Images that fool one DNN generalize to fool

other DNNs

As we wrote in the paper: “One question is whether

different DNNs learn the same features for each class, or

whether each trained DNN learns different discriminative

features. One way to shed light on that question is to see if

images that fool one DNN also fool another. To test that, we

evolved CPPN-encoded images with one DNN (DNNA)

and then input them to another DNN (DNNB), where

DNNA and DNNB have identical architectures and train-

ing, and differ only in their randomized initializations. We

performed this test for both MNIST and ImageNet DNNs.”

Here we show the details of this experiment and its results.

A.1. Generalization across DNNs with the same ar
chitecture

We performed this test with two MNIST [3] DNNs

(MNISTA and MNISTB) and two ImageNet [2] DNNs

(ImageNetA and ImageNetB), where A and B differ only

in their random initializations, but have the same architec-

ture. 300 images were produced with each MNIST DNN,

and 1000 images were produced with each ImageNet DNN.

Taking images evolved to score high on DNNA and

inputting them to DNNB (and vice versa), we find that

there are many evolved images that are given the same

top-1 prediction label by both DNNA and DNNB (Ta-

ble S1a). Furthermore, among those images, many are

given ≥ 99.99% confidence scores by both DNNA and

DNNB (Table S1b). Thus, evolution produces patterns

that are generally discriminative of a class to multiple, in-

dependently trained DNNs. On the other hand, there are

still images labeled differently by DNNA and DNNB (Ta-

ble S1a). These images are specifically fine-tuned to exploit

the original DNN. We also find ≥ 92.18% of the images that

are given the same top-1 prediction label by both networks,

are given higher confidence score by the original DNN (Ta-

ble S1c).

From the experiment with MNIST DNNs, we observed

that images evolved to represent digit classes 9, 6, and 2

fooled both networks DNNA and DNNB the most. Fur-

Dataset ImageNet MNIST

DNNA

on

DNNB

images

DNNB

on

DNNA

images

DNNA

on

DNNB

images

DNNB

on

DNNA

images

Top-1 matches 62.8 65.9 43.3 48.7

(a) Average 64.4 46.0

Top-1 matches

scoring 99%
5.0 7.2 27.3 27.3

(b) Average 6.1 27.3

Top-1 matches

scoring higher

on original DNN

95.1 98.0 88.5 95.9

(c) Average 96.6 92.2

Table S1.

Top-1 matches: The percent of images that are given the same top-

1 label by both DNNA and DNNB .

Top-1 matches scoring 99%: The percent of images for which

both DNNA and DNNB believe the top-1 predicted label to be

the same and the two confidence scores given are both ≥ 99%.

Top-1 matches scoring higher: Of the images that are given the

same top-1 label by both DNNA and DNNB , the percent that

are given a higher confidence score by the original DNN than by

the other, testing DNN.

thermore, these images revealed distinctive patterns (Fig-

ure S1).

9

6

2

Figure S1. CPPN-encoded, evolved images which are given ≥

99% confidence scores by both DNNA and DNNB to represent

digits 9, 6, and 2. Each column represents an image produced

by an independent run of evolution, yet evolution converges on a

similar design, which fools not just the DNN it evolved with, but

another, independently trained DNN as well.

1

978-1-4673-6964-0/15/$31.00 ©2015 IEEE

A.2. Generalization across DNNs that have different
architectures

Here we test whether images that fool a DNN with one

architecture also fool another DNN with a different archi-

tecture. We performed this test with two well-known Ima-

geNet DNN architectures: AlexNet [2] and GoogLeNet [5],

both of which are provided by Caffe [1] and trained on the

same ILSVRC 2012 dataset [4]. GoogLeNet has a top-1

error rate of 31.3%.

1000 images were produced with each ImageNet DNN.

We found that 20.7% of images evolved for GoogLeNet are

also given the same top-1 label by AlexNet (and 17.3% vice

versa). Thus, many fooling examples are not fit precisely to

a particular network, but generalize across different DNN

architectures.

B. Does using an ensemble of networks instead

of just one prevent fooling?

We also tested whether requiring an image to fool an en-

semble of multiple networks makes it impossible to produce

fooling images. We tested an extreme case where each net-

work in the ensemble has a different architecture. Specif-

ically, we tested with an ensemble of 3 different DNN ar-

chitectures: CaffeNet, AlexNet and GoogLeNet. CaffeNet

[1] performs similarly to AlexNet [2], but has a slightly dif-

ferent architecture. The final confidence score given to an

image is calculated as the mean of the three scores given by

these three different DNNs. After only 4000 generations,

evolution was still able to produce fooling images for 231

of the 1000 classes with ≥ 90% confidence. Moreover, the

median is also high at 65.2% and the max is 100%.

C. Training networks to recognize fooling im-

ages to prevent fooling

As we wrote in the paper: “One might respond to the

result that DNNs are easily fooled by saying that, while

DNNs are easily fooled when images are optimized to pro-

duce high DNN confidence scores, the problem could be

solved by simply changing the training regimen to include

negative examples. In other words, a network could be re-

trained and told that the images that previously fooled it

should not be considered members of any of the original

classes, but instead should be recognized as a new fooling

images class.”

We tested this hypothesis with CPPN-encoded images on

both MNIST and ImageNet DNNs. The process is as fol-

lows: We train DNN1 on a dataset (e.g. ImageNet), then

evolve CPPN images that are given a high confidence score

by DNN1 for the n classes in the dataset, then we take

those images and add them to the dataset in a new class

n + 1; then we train DNN2 on this enlarged “+1” dataset;

(optional) we repeat the process, but put the images that

evolved for DNN2 in the n + 1 category (a n + 2 cate-

gory is unnecessary because any images that fool a DNN

are “fooling images” and can thus go in the n+1 category).

Specifically, to represent different types of images, each

iteration we add to this n + 1 category m images. These

images are randomly sampled from both the first and last

generations of multiple runs of evolution that produce high

confidence images for DNNi. Each run of evolution on

MNIST or ImageNet produces 20 or 2000 images, respec-

tively, with half from the first generation and half from the

last. As in the original experiments evolving images for

MNIST, each evolution run on MNIST or ImageNet lasts

for 200 or 5000 generations, respectively. These generation

numbers were chosen from the previous experiments. The

specific training details are presented in the following sec-

tions.

C.1. Training MNIST DNNs with fooling images

To make the n+1 class have the same number of images

as other MNIST classes, the first iteration we add 6000 and

1000 images to the training and validation sets, respectively.

For each additional iteration, we add 1000 and 100 new im-

ages to the training and validation sets (Table S2).

MNIST DNNs (DNN1 −DNN15) were trained on im-

ages of size 28 × 28, using stochastic gradient descent

(SGD) with a momentum of 0.9. Each iteration of SGD

used a batch size of 64, and a multiplicative weight decay

of 0.0005. The learning rate started at 0.01, and reduced

every iteration by an inverse learning rate policy (defined

in Caffe [1]) with power = 0.75 and gamma = 0.0001.

DNN2−DNN15 obtained similar error rates to the 0.94%

of DNN1 trained on the original MNIST (Table S2).

Since evolution still produced many unrecognizable im-

ages for DNN2 with confidence scores of 99.99%, we re-

peated the process for 15 iterations (Table S2). However,

the retraining does not help, even though DNN15’s over-

represented 11th “fooling image class” contains ∼25% of

the training set images.

C.2. Training ImageNet DNNs with fooling images

The original ILSVRC 2012 training dataset was ex-

tended with a 1001st class, to which we added 9000 im-

ages and 2000 images that fooled DNN1 to the training

and validation sets, respectively. That ∼7-fold increase over

the ∼1300 training images per ImageNet class is to empha-

size the fooling images in training. Without this imbalance,

training with negative examples did not prevent fooling; re-

trained MNIST DNNs did not benefit from this strategy of

over representing the fooling image class (data not shown).

The images produced by DNN1 are of size 256 × 256
but cropped to 227 × 227 for training. DNN2 was trained

using SGD with a momentum of 0.9. Each iteration of SGD

i Error MNIST Error Train Val Score

1 0.94 0.94 60000 10000 99.99

2 1.02 0.87 66000 11000 97.42

3 0.92 0.87 67000 11100 99.83

4 0.89 0.83 68000 11200 72.52

5 0.90 0.96 69000 11300 97.55

6 0.89 0.99 70000 11400 99.68

7 0.86 0.98 71000 11500 76.13

8 0.91 1.01 72000 11600 99.96

9 0.90 0.86 73000 11700 99.51

10 0.84 0.94 74000 11800 99.48

11 0.80 0.93 75000 11900 98.62

12 0.82 0.98 76000 12000 99.97

13 0.75 0.90 77000 12100 99.93

14 0.80 0.96 78000 12200 99.15

15 0.79 0.95 79000 12300 99.15
Table S2. Details of 15 training iterations of MNIST DNNs.

DNN1 is the model trained on the original MNIST dataset with-

out CPPN images. DNN2 − DNN15 are models trained on the

extended dataset with CPPN images added.

Error: The error (%) on the validation set (with CPPN images

added).

MNIST Error: The error (%) on the original MNIST validation set

(10,000 images).

Train: The number of images in the training set.

Val: The number of images in the validation set.

Score: The median confidence scores (%) of images produced by

evolution for that iteration. These numbers are also provided in

the paper.

used a batch size of 256, and a multiplicative weight decay

of 0.0005. The learning rate started at 0.01, and dropped

by a factor of 10 every 100,000 iterations. Training stopped

after 450,000 iterations. The whole training procedure took

∼10 days on an Nvidia K20 GPU.

Training DNN2 on ImageNet yielded a top-1 error rate

of 41.0%, slightly better than the 42.6% for DNN1: we

hypothesize the improved error rate is because the 1001st

CPPN image class is easier than the other 1000 classes, be-

cause it represents a different style of images, making it

easier to classify them. Supporting this hypothesis is the

fact that DNN2 obtained a top-1 error rate of 42.6% when

tested on the original ILSVRC 2012 validation set.

In contrast to the result in the previous section, for Ima-

geNet models, evolution was less able to evolve high confi-

dence images for DNN2 compared to the high confidences

evolution produced for DNN1. The median confidence

score significantly decreased from 88.1% for DNN1 to

11.7% for DNN2 (p < 0.0001 via Mann-Whitney U test).

D. Evolving regular images to match MNIST

As we wrote in the paper: “Because CPPN encodings

can evolve recognizable images, we tested whether this

more capable, regular encoding might produce more rec-

ognizable images than the irregular white-noise static of the

direct encoding. The result, while containing more strokes

and other regularities, still led to LeNet labeling unrec-

ognizable images as digits with 99.99% confidence after

only a few generations. By 200 generations, median con-

fidence is 99.99%.”. Here we show 10 images ×50 runs

= 500 images produced by the CPPN-encoded EA that an

MNIST DNN believes with 99.99% to be handwritten digits

(Fig. S4).

Looking at these images produced by 50 independent

runs of evolution, one can observe that images classified

as a 1 tend to have vertical bars. Images classified as a 2

tend to have a horizontal bar in the lower half of the image.

Moreover, since an 8 can be drawn by mirroring a 3 hori-

zontally, the DNN may have learned some common features

from these two classes from the training set. Evolution re-

peatedly produces similar patterns for class 3 and class 8.

E. Gradient ascent with regularization

In the paper we showed images produced by direct gra-

dient ascent to maximize the posterior probability (softmax

output) for 20 example classes. Directly optimizing this ob-

jective quickly produces confidence over 99.99% for un-

recognizable images. By adding different types of regu-

larization, we can also produce more recognizable images.

We tried three types of regularization, highlighted in the

Figs. S5, S6, and S7.

Fig. S5 shows L2-regularization, implemented as a

weight decay each step. At each step of the optimization,

the current mean-subtracted image X is multiplied by a

constant 1− γ for small γ. Fig. S5 shows γ = 0.01.

Fig. S6 shows weight decay (now with γ = 0.001) plus

two other types of regularization. The first additional reg-

ularization is a small blurring operator applied each step to

bias the search toward images with less high frequency in-

formation and more low frequency information. This was

implemented via a Gaussian blur with radius 0.3 after ev-

ery gradient step. The second additional regularization was

a pseudo-L1-regularization in which the (R, G, B) pixels

with norms lower than the 20th percentile were set to 0.

This tended to produce slightly sparser images.

Finally, Fig. S7 shows a lower learning rate with the

same weight decay and slightly more aggressive blurring.

Because the operations of weight decay and blurring do not

depend on the learning rate, this produces an objective con-

taining far more regularization. As a result, many of the

classes never achieve 99%, but the visualizations are of a

different quality and, in some cases, more clear.

All images generated in this manner are optimized by

starting at the ImageNet mean plus a small amount of Gaus-

sian noise to break symmetry and then following the gradi-

ent. The noise has a standard deviation of 1/255 along each

dimension, where dimensions have been scaled to fall into

the range [0, 1]. Because of this random initialization, the

final image produced depends on the random draw of Gaus-

sian noise. Fig. S8 and Fig. S9 show the variety of images

that may be produced by taking different random draws of

this initial noise.

F. Confidence scores of real ImageNet images

The optimization methods presented can generate un-

recognizable images that are given high confidence scores.

However, to find out if these high scores for fooling images

are similar to the confidence scores given by DNNs for the

natural images they were trained to classify, we evaluate the

entire ImageNet validation set with the ImageNet DNN [2].

Across 50,000 validation images, the median confidence

score is 60.3%. Across the cases when images are classi-

fied correctly (i.e., the top-1 label matches the ground truth

label), the DNN gives a median confidence score of 86.7%.

On the contrary, when the top-1 prediction label does not

match the ground truth, the images are given only 33.7%

median confidence. Thus, the median confidence score of

88.11% of synthetic images that match ImageNet is compa-

rable to that of real images.

G. Can the fooling images be considered art?

To test the hypothesis that the CPPN fooling images

could actually be considered art, we submitted a selection of

them to a selective art contest: the “University of Wyoming

40th Annual Juried Student Exhibition”, which only ac-

cepted 35.5% of the submissions. Not only were the images

accepted, but they were also amongst the 21.3% of submis-

sions to be given an award. The work was then displayed at

the University of Wyoming Art Museum (Fig. S2, S3). The

submitted image is available at http://evolvingai.

org/fooling.

Figure S2. A selection of fooling images were accepted as art in

a selective art competition. They were then displayed alongside

human-made art at a museum.

Figure S3. Museum visitors view a montage of CPPN-encoded

fooling images.

Supplementary References

[1] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-

shick, S. Guadarrama, and T. Darrell. Caffe: Convolu-

tional architecture for fast feature embedding. arXiv preprint

arXiv:1408.5093, 2014. 2

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet clas-

sification with deep convolutional neural networks. In Ad-

vances in neural information processing systems, pages 1097–

1105, 2012. 1, 2, 4

[3] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. Proceedings

of the IEEE, 86(11):2278–2324, 1998. 1

[4] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,

Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et al. Ima-

genet large scale visual recognition challenge. arXiv preprint

arXiv:1409.0575, 2014. 2

[5] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,

D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper

with convolutions. arXiv preprint arXiv:1409.4842, 2014. 2

0

1

1 2 3 4 5 6 7 8 9

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

0

26

1 2 3 4 5 6 7 8 9

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

Figure S4. 50 independent runs of evolution produced images that an MNIST DNN believes with 99.99% to be handwritten digits.

Columns are digits. In each row are the final (best) images evolved for each class during that run.

Figure S5. Images found by directly maximizing an objective function consisting of the posterior probability (softmax output) added to

a regularization term, here L2-regularization. Optimization begins at the ImageNet mean plus small Gaussian noise to break symmetry.

When regularization is added, confidences are generally lower than 99.99% because the objective contains terms other than confidence.

Here, the average is 98.591%. For clarity, images are shown with the mean subtracted.

Figure S6. As in Fig. S5, but with blurring and pseudo-L1-regularization, which is accomplished by setting the pixels with lowest norm to

zero throughout the optimization.

Figure S7. As in Fig. S5, but with slightly more aggressive blurring than in Fig. S6.

Figure S8. Multiple images produced for each class in the manner of Fig. S5. Each column shows the result of a different local optimum,

which was reached by starting at the ImageNet mean and adding different draws of small Gaussian noise.

Figure S9. Multiple images produced for each class in the manner of Fig. S7. Each column shows the result of a different local optimum,

which was reached by starting at the ImageNet mean and adding different draws of small Gaussian noise.

