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This supplementary material contains explanations of confidence measures and additional results for challenging datasets.

1. Confidence measures

We used a variety of confidence measures in [1–5] for constructing the 22-dimensional feature vector fh. Before explaning

each of them, we introduce a few notations to explain confidence measures in a simple and clear way. Instead of using

C(p, d) as a matching cost, we use ci as the ith minimum matching cost among all disparity hypotheses D for p. di is the

corresponding disparity value to ci. For example, c1 and d1 are the minimum matching cost and the corresponding disparity

value for p. If necessary, we use ci(p) and di(p) instead of ci and di when the position p should be explicitly described.

Hence, we also use a superscipt R to indicate that the matching cost or the disparity value is computed w.r.t. the right image.

Otherwise, the matching cost is computed w.r.t. the left image which is the reference image. Lastly, we also define ĉ2 as the

second local minimum of the matching cost.

Figure 1. Matching costs with the minimum cost (c1), the second minimum cost (c2), and the second local minimum cost (ĉ2)

1.1. Peak Ratio Measure (f1)

The peak ratio [5] is defined as

f1(p) =
ĉ2

c1
, (1)

which is the ratio of the second local minimum cost to the minimum matching cost. When the cost curve (matching costs) is

unimodal, the second local minimum cannot be defined. Therefore, for some pixels, the peak ratio cannot be measured.

1.2. Naive Peak Ratio Measure (f2)

The naive peak ratio [5] slightly changes the peak ratio as

f2(p) =
c2

c1
, (2)

where the numberator is changed as the second minimum matching cost. In contrast to the peak ratio, the naive peak ratio

can be computed for all pixels.
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1.3. Matching score measure (f3)

The matching score measure [5] is defined as

f3(p) = −c1, (3)

which is the minimum matching cost itself. The less the matching score is, we believe that the match is more likely to be

correct. Here, the minus sign is used to assign correct matches higher values.

1.4. Maximum margin measure (f4)

The maximum margin [5] is defined as

f4(p) = c2 − c1, (4)

which is the difference between the second and first minimum matching costs.

1.5. Winner margin measure (f5)

Similary with the maximum margin, the winner margin measure [5] is defined as

f5(p) =
c2 − c1∑

i
ci

, (5)

in which the denominator is used to normalize the maximum margin.

1.6. Maximum likelihood measure (f6)

Confidence measures (or features) f6 to f9 treat a matching cost as a probability for a disparity value. The maximum

likelihood measure [5] is defined as

f6(p) =
exp(− c1

2σ2 )∑
i
exp(− ci

2σ2 )
, (6)

where the denominator is the nomalization term, and the σ2 is the variance of matching costs.

1.7. Perturbation measure (f7)

The perturbation measure [4] is defined as

f7(p) =

|D|∑

i=2

exp(−
(c1 − ci)

λ2
), (7)

where λ is a scaling factor for the difference of matching costs. We set this as 1.

1.8. Negative entropy measure (f8)

The negative entorpy measure [4, 5] is defined as

f8(p) = −
∑

i

p(di)log p(di), (8)

where the probability density function p(d) is computed as p(di) =
exp(−ci)∑
k
exp(−ck)

.

1.9. Leftright difference measure (f9)

The left-right difference measure [5] is defined as

f9(p) =
c2 − c1

|c1 − cR1 (pd1
)|
, (9)

where cR1 (pd) is the minimum matching cost of pd1
w.r.t. the right image. pd1

is the position p shifted by the d1 along

the scanline. Although d1 is used for computing the confidence measure, we regard left-right difference is computed from

matching costs.
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1.10. Local curvature measure (f10)

The local curvature measure [4] is defined as

f10(p) = −2C(p, d1) + C(p, d1 − 1) + C(p, d1 + 1). (10)

1.11. Disparity variance measure (f11 to f14)

The disparity variance measure [4] is defined as

f11(p) = −
1

|Np| − 1

∑

p∈Np

(d1(q)− µ)2, (11)

where Np is a set of neighboring pixels for p, and the minus sign is used to assign correct matches higher values. In fact,

the disparity variance measure in [4] used the magnitude of disparity gradients instead of computing the variance of disparity

values.

1.12. Distance from discontinuity (f15)

The distance from discontinuity measure [1] is defined as

f15(p) = dist(p,q), (12)

where q is the position of the nearest discontinuity from p. In [1], a pixel is determined as the (potential) depth discontinuity

if d1(q) is different from its four neighbors. However, we determined the depth discontinuity in a slightly different way. We

computed the disparity gradient, and deteremined as the (potential) depth discontinuity if the magnitude of gradient is larger

than 2.

1.13. Median deviation measure (f16 to f19)

The median deviation measure [1] is defines as

f16(p) = −|d1 −MED
q∈Np

(d1(q))|, (13)

which is the difference between d1 and the median of disparity values. In [1], the difference is truncated at 2, but we did

not truncate the difference value. Moreover, [1] computed the median value in a 5×5 window; but, we used various window

sizes, 5×5 for f16, 7×7 for f17, 9×9 for f18, and 11×11 for f19.

1.14. Leftright consistency (f20)

The left-right consistency measure [5] is defined as

f20(p) = −|d1 − dR1 (pd1
)|, (14)

which is the difference between the disparity value and its corresponding disparity value in the right image.

1.15. Magnitute of image gradient (f21)

The image gradient measure [4] is defined as

f21(p) = ||∇I(p)||, (15)

which is the magnitude of the image gradient at p.

1.16. Distance from border (f22)

Lastly, the distance from border measure [1] is defined as

f22(p) = −min(px, dmax), (16)

where px is the position of p in the x-axis, and dmax is the maximum disparity value. In [1], this measure is defined as the

distance from the image border. Instead, we only considered the left most image border (when the left image is the reference)

in which pixels do not have actual correspondences due to the different field of views between the left and right cameras.

2. Qualitative evaluation

In this section, we show additional results for challenging datasets [6].
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(a) Left images

(b) Initial disparity maps

(c) Predicted confidence maps

(d) Estimated disparity maps

Figure 2. Results for 7-18 frames (sun flare sequence)
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(a) Left images

(b) Initial disparity maps

(c) Predicted confidence maps

(d) Estimated disparity maps

Figure 3. Results for 19-30 frames (sun flare sequence)
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(a) Left images

(b) Initial disparity maps

(c) Predicted confidence maps

(d) Estimated disparity maps

Figure 4. Results for 7-18 frames (night and snow sequence)
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(a) Left images

(b) Initial disparity maps

(c) Predicted confidence maps

(d) Estimated disparity maps

Figure 5. Results for 19-30 frames (night and snow sequence)
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(a) Left images

(b) Initial disparity maps

(c) Predicted confidence maps

(d) Estimated disparity maps

Figure 6. Results for 31-42 frames (night and snow sequence)

8



(a) Left images

(b) Initial disparity maps

(c) Predicted confidence maps

(d) Estimated disparity maps

Figure 7. Results for 7-18 frames (reflecting car sequence)
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(a) Left images

(b) Initial disparity maps

(c) Predicted confidence maps

(d) Estimated disparity maps

Figure 8. Results for 19-30 frames (reflecting car sequence)
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(a) Left images

(b) Initial disparity maps

(c) Predicted confidence maps

(d) Estimated disparity maps

Figure 9. Results for 31-42 frames (reflecting car sequence)

11



(a) Left images

(b) Initial disparity maps

(c) Predicted confidence maps

(d) Estimated disparity maps

Figure 10. Results for 43-54 frames (reflecting car sequence)

12



(a) Left images

(b) Initial disparity maps

(c) Predicted confidence maps

(d) Estimated disparity maps

Figure 11. Results for 7-18 frames (wet autobahn sequence)
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