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We compare more saliency maps generated by our proposed algorithm BSCA and MCA with state-of-the-art methods,

including IT98 [5], FT09 [1], CA10 [4], RC11 [3], XL13 [10], LR12 [9], HS13 [11], UFO13 [6], RB14 [12]. We display the

results tested on five public datasets: ASD [1], MSRA-5000 [8], THUS [2], ECSSD [11] and PASCAL-S [7].
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Figure 1. Comparison of different saliency maps on ASD. BSCA: The background-based maps optimized by Single-layer Cellular Au-

tomata. MCA: The integrated saliency maps via Multi-layer Cellular Automata. GT: Ground Truth.
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Figure 2. Comparison of different saliency maps on MSRA-5000. BSCA: The background-based maps optimized by Single-layer Cellular

Automata. MCA: The integrated saliency maps via Multi-layer Cellular Automata. GT: Ground Truth.
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Figure 3. Comparison of different saliency maps on THUS-10000. BSCA: The background-based maps optimized by Single-layer Cellular

Automata. MCA: The integrated saliency maps via Multi-layer Cellular Automata. GT: Ground Truth.
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Figure 4. Comparison of different saliency maps on ECSSD. BSCA: The background-based maps optimized by Single-layer Cellular

Automata. MCA: The integrated saliency maps via Multi-layer Cellular Automata. GT: Ground Truth.
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Figure 5. Comparison of different saliency maps on PASCAL-S. BSCA: The background-based maps optimized by Single-layer Cellular

Automata. MCA: The integrated saliency maps via Multi-layer Cellular Automata. GT: Ground Truth.



We compare more saliency maps generated by different methods and their optimized versions with Single-layer Cellular

Automata (SCA). These methods include IT98 [5], FT09 [1], CA10 [4], RC11 [3], XL13 [10], LR12 [9], HS13 [11], UFO13

[6], RB14 [12]. We display the results tested on five public datasets: ASD [1], MSRA-5000 [8], THUS [2], ECSSD [11] and

PASCAL-S [7].
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Figure 6. Comparison of different saliency maps generated by nine state-of-the-art methods and optimized by Single-layer Cellular Au-

tomata on ASD. The saliency maps in the odd rows are original results. The saliency maps displayed in the even rows are the optimized

results. Input images and ground truth are presented in the first column.
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Figure 7. Comparison of different saliency maps generated by nine state-of-the-art methods and optimized by Single-layer Cellular Au-

tomata on MSRA-5000. The saliency maps in the odd rows are original results. The saliency maps displayed in the even rows are the

optimized results. Input images and ground truth are presented in the first column.
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Figure 8. Comparison of different saliency maps generated by nine state-of-the-art methods and optimized by Single-layer Cellular Au-

tomata on THUS-10000. The saliency maps in the odd rows are original results. The saliency maps displayed in the even rows are the

optimized results. Input images and ground truth are presented in the first column.
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Figure 9. Comparison of different saliency maps generated by nine state-of-the-art methods and optimized by Single-layer Cellular Au-

tomata on ECSSD. The saliency maps in the odd rows are original results. The saliency maps displayed in the even rows are the optimized

results. Input images and ground truth are presented in the first column.
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Figure 10. Comparison of different saliency maps generated by nine state-of-the-art methods and optimized by Single-layer Cellular

Automata on PASCAL-S. The saliency maps in the odd rows are original results. The saliency maps displayed in the even rows are the

optimized results. Input images and ground truth are presented in the first column.
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