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In this note, we show the details of mathematical deriva-

tions omitted in our main paper.

A. Derivation of the MRF transformation

(Proof of Theorem 3.2)

Section 3.3 presents the proposed method for MRF trans-

formation. As explained there, the derivation follows the

standard methodology. Namely, as it is difficult to compute

the marginal distributions from p0(x), choosing its approxi-

mate distribution q0(x) such that the marginal distributions

are easier to compute, we make it as close to p0 as possi-

ble. This is done by minimizing the KL distance D[q0‖p0],
which reduces to that of the following free energy:

F [q0] = 〈E0(x)〉q0 −H[q0], (31)

where

〈E0(x)〉q0 =
∑

x

q0(x)E0(x),

and

H[q0] = −
∑

x

q0(x) ln q0(x).

The main idea of our method is to choose q0(x) as

q0(x) =
∑

z1

q0,1(x|z1)q1(z1). (32)

As is explained in the main paper, we choose q0,1(x|z1)
arbitrarily depending on applications. Then, the problem

turns to the estimation of q1(z1).
To do so, we rewrite Eq.(31) by using Eq.(32). The first

term of Eq.(31) is rewritten as

〈E0(x)〉q0 =
∑

z1

q1(z1)
∑

x

q0,1(x|z1)E0(x)

=

〈

∑

x

q0,1(x|z1)E0(x)

〉

q1

. (33)

To rewrite the second term of Eq.(31), we use q0,1(z1|x) =
q0,1(x|z1)q1(z1)/q0(x), which can be rewritten as

ln q0(x) = ln q(z1) + ln q0,1(x|z1) − ln q0,1(z1|x).
(34)

Note that this equation holds true for any z1 ∈ Z1, where

Z1 is an appropriately defined variable space of z1. Using

Eq.(34), we can rewrite H[q0] in Eq.(31) as

H[q0] = −
∑

z1

q1(z1) ln q1(z1)

−
∑

z1

q1(z1)
∑

x

q(x|z1) ln q(x|z1)

+
∑

x

q0(x0)
∑

z1

q0,1(z1|x) ln q0,1(z1|x). (35)

The substitution of Eq.(33) and Eq.(35) into Eq.(31) yields

F [q0] =

〈

∑

x

q0,1(x|z1)(E0(x) + ln q0,1(x|z1))

〉

q1

+
∑

z1

q1(z1) ln q1(z1)

+

〈

∑

z1

q0,1(z1|x) ln q0,1(z1|x)

〉

q0

. (36)

The second term of the right hand side is the entropy of q1,

which we write as H[q1]. Defining E1(z1) and S1(x) as

E1(z1) =
∑

x

q0,1(x|z1) {E0(x) + ln q0,1(x|z1)} (37)

and

S1(x) = −
∑

z

q0,1(z1|x) ln q0,1(z1|x), (38)

respectively, we can rewrite F [q0] as

F [q0] = 〈E1(z1)〉q1 −H[q1] + 〈S1(x)〉q0 . (39)
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Lemma 3.1 states that the third term vanishes when the con-

dition given in Lemma 3.1 is met. This is self-evident from

Eq.(38). We have thus proved Theorem 3.2.

B. Downsizing a CRF for semantic labeling

In Section 6.2, we show the experiments of downsizing

a CRF for semantic labeling. We considered a grid CRF

whose energy is given by

E(x|I; θ) =
∑

i

fi(xi|I)

∑

(i,j)∈E

∑

s,t

θstδ(xi − s)δ(xj − t), (40)

where θst is the parameter representing the interaction be-

tween the label s and t, which we want to determine through

learning. To be specific, we determine θ = {θst} by mini-

mizing the negative log-likelihood

J(θ) = −
1

M

∑

m

ln p(xm|Im; θ). (41)

As mentioned in Section 6.2, we use the (stochastic) gradi-

ent descent method for the minimization. The gradient of

J(θ) is given as

∂J

∂θst
=

1

M

∑

m

∑

(i,j)∈E

δ(xm
i − s)δ(xm

j − t)

−
1

M

∑

m

∑

(i,j)∈E

pij(s, t|I
m; θ), (42)

where pij(xi, xj |I
m; θ) is the marginal distribution be-

tween the i-th and j-th sites. In our experiments, we choose

BP for their estimation. In this configuration, we examine

the effectiveness of the proposed MRF transformation.

B.1. Grouping of discrete labels

Let q1ij(zi, zj |I
m; θ) be the marginal distribution of the

transformed CRF, which is estimated by using the aug-

mented energy of Eq.(20), and let q0ij(xi, xj |I
m; θ) be the

marginal distribution of the original energy function. Using

Eqs.(14), (19), and (20), these two are related as

q0ij(xi, xj |I
m; θ) =

1

|X u
i ||X

v
j |

q1ij(u, v|I
m; θ), (43)

where u and v on the right hand side are the labels (inde-

ces) of the supports X u
i and X v

j within which xi and xj lie,

respectively; that is, xi ∈ X u
i and xj ∈ X v

j .

B.2. Coarse graining of MRFs

Similarly, using Eqs.(21), (24), and (25), we can express

q0ij with q1ij . If (i, j) ∈ In(k), q0ij can be expressed as

q0ij(xi, xj |I
m; θ) = δ(xi − xj)q

1
k(xi|I

m; θ), (44)

where q1k(xi|I
m; θ) is the marginal distribution of the i-th

site estimated from q1(z1). If (i, j) ∈ Ex(k, l), q0ij is ex-

pressed as

q0ij(xi, xj |I
m; θ) = q1k,l(xi, xj |I

m; θ), (45)

where q1k,l(xi, xj) is the marginal distribution estimated

from q1(z1). Thus, we can regard q1k,l as q0ij in this case.


