
Supplementary Materials: Active Learning for Structured Probabilistic Models

with Histogram Approximation

In this supplementary material, we present the proofs of

Lemma 1 and Lemma 2.

1. Proof of Lemma 1

Lemma 1. Let Q(y;Y,q) =
∑M

m=1 qm[[y = ym]]
be a SOWD-approximation parameterized by Y and q.

Let KL(Q||P) =
∑

y∈Y Q(y) log Q(y)
P(y|x) denote the KL-

divergence between the two distributions. The parameters

Ŷ, q̂ that minimize KL(Q||P) are:

ŷ
m = argmax

y∈Y
P(y|x) (1a)

s.t. y 6= ŷ
m′

∀m′
< m

(1b)

q̂m =
eS(ŷm)

∑M

m′=1 e
S(ŷm′

)

(2)

Proof.

KL(Q||P) =
∑

y∈Y

Q(y) log
Q(y)

P(y|x)
(3a)

=
∑

y∈Y

Q(y) log
Q(y)

P(y|x)
+

∑

y∈Y\Y

Q(y|x) log
Q(y)

P(y|x)
(3b)

=
∑

y∈Y

Q(y) log
Q(y)

P(y|x)
(3c)

Thus, we have

min
Y,q

KL(Q||P) ⇒















min
qm,ym

M
∑

m=1
qm log qm

P(ym|x)

s.t.
M
∑

m=1
qm = 1

(4)

We can write the Lagrangian for Eqn. (4) as

L(Y,q, λ) =

M
∑

m=1

qm log
qm

P(ym|x)
+ λ ·

(

M
∑

m=1

qm − 1

)

(5)

Method of Lagrangian multipliers involves setting the

derivative of L w.r.t qm to 0,

∂L

∂qm
= log

qm

P(ym|x)
+ 1 + λ = 0 (6)

Thus,

qm = e−1−λP(ym|x) (7)

Using the fact that
M
∑

m=1
qm = 1, we can show that λ =

log

(

M
∑

m=1
P(ym|x)

)

− 1. Thus,

qm =
P(ym|x)

∑M

m′=1 P(y
m′ |x)

(8)

Plugging this definition of qm in objective function of
Eqn. (4), we get

M
∑

m=1

qm log
qm

P(ym|x)
(9)

=

M
∑

m=1

P(ym|x)
∑M

m′=1 P(y
m′ |x)

log

P(ym|x)
∑

M

m′=1
P(ym′

|x)

P(ym|x)
(10)

=

M
∑

m=1

P(ym|x)
∑M

m′=1 P(y
m′ |x)

log
1

∑M

m′=1 P(y
m′ |x)

(11)

=

(

M
∑

m=1

P(ym|x)

)

·

(

1
∑M

m′=1 P(y
m′ |x)

log
1

∑M

m′=1 P(y
m′ |x)

)

(12)

=− log

M
∑

m′=1

P(ym′

|x) (13)

Thus,

min
Y,q

KL(Q||P) ⇒ max
Y

∑

y∈Y

P(y|x) (14)

Clearly,
∑

y∈Y

P(y|x) is maximized by picking the top M

probability locations in P,

ŷm = argmax
y∈Y

P(y|x) (15)

s.t. y 6= ŷm′

∀m′ < m (16)
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q̂m =
P(ŷm|x)

∑M

m′=1 P(ŷ
m′ |x)

=
eS(ŷm)

∑M

m′=1 e
S(ŷm′ )

(17)

This completes the proof. We can see that the optimal Q

is a normalized distribution over the top M most probable

locations in P.

2. Proof of Lemma 2

Lemma 2. Let Q(y; {Ym},q) =
∑M

m=1
qm

|Ym| [[y ∈ Ym]]

be a histogram-approximation parameterized by bins {Ym}

and weights q. Let KL(P||Q) =
∑

y∈Y P(y|x) log P(y|x)
Q(y)

denote the KL-divergence between the two distributions.

For any fixed set of non-overlapping (potentially unequally

sized) bins {Ym}, such that Y = ∪mYm, the weights q̂

that minimize KL(P||Q) are:

q̂m =
∑

y∈Ym

P(y|x) =
1

Z

∑

y∈Ym

eS(y) (18)

Proof.

KL(P||Q) =

M
∑

m=1

∑

y∈Ym

P(y|x) log

(

P(y|x)
qm

|Ym|

)

(19)

=

M
∑

m=1

∑

y∈Ym

P(y|x) log (P(y|x) · |Ym|)− (20)

M
∑

m=1

∑

y∈Ym

P(y|x) log qm

= h−

M
∑

m=1

∑

y∈Ym

P(y|x) log qm (21)

= h−
M
∑

m=1

pm log qm (22)

where, h is a constant and pm =
∑

y∈Ym

P(y|x), i.e., the

mass of the distribution in the bin m. Thus,

min
q

KL(P||Q) ⇒















min
qm

−
M
∑

m=1
pm log qm

s.t.,
M
∑

m=1
qm = 1

(23)

We can write the Lagrangian for Eqn. (23) as

L(q, λ) = −

M
∑

m=1

pm log qm + λ

(

M
∑

m=1

qm − 1

)

(24)

Method of Lagrangian multipliers involves setting the

derivative of L w.r.t qm to 0,

∂L

∂qm
= −

pm

qm
+ λ = 0 ⇒ qm =

pm

λ
(25)

Using the fact that
M
∑

m=1
qm =

M
∑

m=1

pm

λ
= 1

λ
= 1, we can

show that λ = 1. Thus, q̂m = pm, i.e.,

q̂m =
∑

y∈Ym

P(y|x) =
1

Z

∑

y∈Ym

eS(y) (26)

This completes the proof. We can see that the optimal Q is

a normalized histogram over M bins.

3. Qualitative Results

Fig. 1,2 show example images with the most uncertain-

ty/certainty according to our approach Active-PDivMAP

and Gibbs, under a model trained with 5 images from 2

random trails in the experiment section of the main paper.

We can see that Gibbs has difficulty transitioning out of

one mode to reach another mode. As a result, almost all

sampled segmentations look visually very similar, and the

estimated distribution/histogram is nearly uniform. From

these two examples, we can see that Gibbs will typically

pick images where the MAP is already pretty accurate –

the model will seem uncertain because Gibbs is picking

samples that are all very similar to MAP.

In contrast, our approach Active-PDivMAP can pick im-

ages (first row) for which the set of plausible segmentations

(or histogram bin centers) are truly diverse, but have similar

energies. Such images are much more helpful in updating

the beliefs of the model in an active learning setting.

Note that in both examples, our approach estimates the en-

tropy of the most uncertain image to be ≈ 2.29 (compared

to the maximum possible entropy of a 10-D probability

mass function log 10 = 2.30).
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Figure 1: Example 1: First/second row shows the image with the most uncertainty/certainty, as estimated by our approach

Active-PDivMAP. Third/fourth row shows the image with the most uncertainty/certainty, as estimated by Gibbs. We can

see that Gibbs has difficulty transitioning out of one mode to reach another mode. Thus, almost all sampled segmentations

of the most uncertain image look visually very similar. In contrast, our approach Active-PDivMAP can pick images (first

row) for which the set of plausible segmentations (or histogram bin centers) are truly diverse, but have similar energies. This

identifies images where the model is truly uncertain, and such images are helpful in updating the beliefs of the model.
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Figure 2: Example 2: First/second row shows the image with the most uncertainty/certainty, as estimated by our approach

Active-PDivMAP. Third/fourth row shows the image with the most uncertainty/certainty, as estimated by Gibbs. We can

see that Gibbs has difficulty transitioning out of one mode to reach another mode. Thus, almost all sampled segmentations

of the most uncertain image look visually very similar. In contrast, our approach Active-PDivMAP can pick images (first

row) for which the set of plausible segmentations (or histogram bin centers) are truly diverse, but have similar energies. This

identifies images where the model is truly uncertain, and such images are helpful in updating the beliefs of the model.


