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Due to the page limit, in the main paper, we omitted some details of Algorithms 1 and 2, and all

the proof of the main conclusions. In this supplementary file, we first present the omitted details of

Algorithms 1 and 2, and then present the derivations of the main conclusions in the paper.

A. More Details about Algorithm 1 and Algorithm 2

For convenience, we first present the stopping conditions of Algorithm 2.

A.1. Stopping Condition of Algorithm 2

It is usually non-trivial to set a proper stopping condition for stochastic optimization algorithms.

Usually, we can stop an algorithm when the objective value does not change significantly. For example,

we can stop Algorithm 2 if the primal objective value cannot decrease significantly. Unfortunately,

computing the primal objective value fh is very expensive. Moreover, the primal objective value does

not monotonically decrease w.r.t. h. Therefore, we propose to stop Algorithm 2 if h > 5 and

|fh − fh−5|

fh−5

≤ ǫ.

Here, fh is computed as in Algorithm 2, and it approximates the primal objective value of the SSVM

subproblem. In our implementation, we choose and fix ǫ = 0.005.

A.2. Inequality Constraint Handling in Subproblem Optimization

Note that the conjugate dual of the subproblem in (12) is

max
α

−λΩ∗

(
1

λn

n∑

i=1

∑

y 6=yi

αiyw
⊤ ΦUt

yi,y
(xi)

)
−

1

n

n∑

i=1

L∗
i (−αiy), (15)

s.t.
∑

y 6=yi

αiy ≤ 1, ∀i ∈ [n].

where αiy = [αiy]y 6=yi
and L∗

i denotes the conjugate of the loss function Li. Note that in (15), we have

an inequality constraint
∑

y 6=yi
αiy ≤ 1 on αiy.

In Algorithm 2, we do not store αiy explicitly, thus we can not handle the inequality constraint directly.

When the inequality constraint is ignored, the update rule δiy = λn(△(y,yi)−d)
(a2+ν)

may be too aggressive (e.g.

δiy may be too large). To address this, we use a scaled update rule δiy = λn(△(y,yi)−d)
θ(a2+ν)

instead, where

θ > 1. In our implementation, we initialize θ = 2 and update θ := 2θ when fh does not decrease (See

Algorithm 2).

A.3. Stopping Condition of Algorithm 1

Similar in Algorithm 2, we stop Algorithm 1 when the primal objective value does not decrease

significantly. Let f t = fh, where fh is the approximated primal objective value obtained from Algorithm

2. Then, we stop Algorithm 1 if t > 2 and

|f t − f t−2|

ft−2

≤ ǫo.

In our implementation, we choose and fix ǫo = 0.05.
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B. Lagrangian Dual in (4) of Problem (3)

Proof. Note that ΦV
yi,y

(xi) := ΨV(yi,xi) −ΨV(y,xi), ΦC
yi,y

(xi;η) := ΨC(yi,xi;η) −ΨC(y,xi;η).
The Lagrangian function of the inner minimization problem in (3) can be written as:

L(w, ξ,α,β) =
λ

2
||w||2 +

1

n

n∑

i=1

ξi − β⊤ξ +
n∑

i=1

∑

y 6=yi

αiy

(
∆(y,yi)− u⊤ ΦV

yi,y
(xi)− v⊤ ΦC

yi,y
(xi;η)− ξi

)
.(16)

Let α := [α1y, ..., αny]
⊤. The KKT condition of (16) can be written as

∂L(w, ξ,α,β)

∂u
= 0 ⇒ u =

1

λ

n∑

i=1

∑

y 6=yi

αiy ΦV
yi,y

(xi); (17)

∂L(w, ξ,α,β)

∂v
= 0 ⇒ v =

1

λ

n∑

i=1

∑

y 6=yi

αiy ΦC
yi,y

(xi;η); (18)

∂L(w, ξ,α,β)

∂ξi
= 0 ⇒

1

n
=
∑

y 6=yi

αiy + βi; (19)

α � 0, and β � 0. (20)

Let A = {α ∈ R
l|α � 0,

∑
y 6=yi

αiy ≤ 1
n
} be the domain of α. Define

u(α) :=
n∑

i=1

∑

y 6=yi

αiy ΦV
yi,y

(xi) and v(α,η) :=
n∑

i=1

∑

y 6=yi

αiy ΦC
yi,y

(xi;η). (21)

Substituting the above relations into (16), the Lagrangian dual of the inner problem of (3) can be written

as

max
α∈A

−
1

2λ
||u(α)||2 −

1

2λ
||v(α,η)||2 + b⊤α. (22)

C. Proof of Theorem 1

The proof of Theorem 1 can be adapted from the proof of Theorem 2 in [34].

D. Proof of Proposition 1

Proof. Let Ω(ω) = 1
2
(
∑t

k=1 ‖ωk‖)
2. Define a cone Qr = {(u, v) ∈ R

r+1, ‖u‖2 ≤ v}. Let zk = ‖ωk‖,

we have Ω(v) = 1
2
(
∑t

k=1 ‖ωk‖)
2 = 1

2
z2, where z =

∑t

k=1 zk, zk ≥ 0 and z ≥ 0. Then, problem (10)
can be transformed to the following problem:

min
z,u,v

λ

2
||u||2 +

λ

2
z
2 +

1

n

n
∑

i=1

ξi, s.t.

t
∑

k=1

zk ≤ z, (ωk, zk) ∈ Qr,

w
⊤ ΦUt

yi,y
(xi) ≥ ∆(y,yi)− ξi, ξi ≥ 0 ∀i, ∀y ∈ Y\yi.

where ω = [ω′
1, ...,ω

′
t]
′. The Lagrangian function of (23) can be written as:

L(z,v, ξ, b,α, γ, ζ,̟) =
λ

2
||u||2 +

λ

2
z
2 +

1

n

n
∑

i=1

ξi + γ(

t
∑

k=1

zk − z)−
t
∑

k=1

(ζ′
kωk +̟kzk)

−
n
∑

i=1

∑

y 6=yi

αiy

(

∆(y,yi)− ξi −

(

ΦV
yi,y

(xi) +

t
∑

k=1

ω
⊤
k Φ

Γk
yi,y(xi)

))

− β
⊤
ξ,



where α, γ, ζk and ̟k are the Lagrangian dual variables to the corresponding constraints. The KKT
condition can be expressed as

∇zL = λz − γ = 0 ⇒ z = γ

λ
;

∇zkL = γ −̟k = 0 ⇒ ̟k = γ;
∇uL = λu+

∑n

i=1

∑

y 6=yi
αiy ΦV

yi,y
(xi) ⇒ u = − 1

λ

∑n

i=1

∑

y 6=yi
αiy ΦV

yi,y
(xi)

∇ωk
L = −

∑n

i=1

∑

y 6=yi
αiy

(

Φ
Γk
yi,y(xi)

)

− ζk = 0 ⇒ ζk = −
∑n

i=1

∑

y 6=yi
αiy

(

Φ
Γk
yi,y(xi)

)

;

∇ξiL = 1

n
−
∑

y 6=yi
αiy − βi = 0 ⇒ 1

n
=
∑

y 6=yi
αiy + βi;

‖ζk‖ ≤ ̟k ⇒ ‖ζk‖ ≤ γ;
βi ≥ 0 ⇒

∑

y 6=yi
αiy ≤ 1

n
.

By substituting the above equations into the Lagrangian function, we have

L(z,v, ξ, b,α, γ, ζ,̟) = −
1

2λ
γ2 −

1

2λ
||ω(α)||2 +

n∑

i=1

∑

y 6=yi

αiy∆(y,yi).

Hence the dual problem of the ℓ22,1-regularized problem can be written as:

max
γ,α

−
1

2λ
γ2 −

1

2λ
||u(α)||2 +

n∑

i=1

∑

y 6=yi

αiy∆(y,yi)

s.t
∥∥∥

n∑

i=1

∑

y 6=yi

αiy ΦΓk
yi,y

(xi)− ζk

∥∥∥ ≤ γ, k = 1, · · · , t,

αi ≥ 0,
∑

y 6=yi

αiy ≤
1

n
, i = 1, · · · , n.

Let θ := − 1
2λ
γ2 − 1

2λ
||u(α)||2 +

∑n

i=1

∑
y 6=yi

αiy∆(y,yi), ωk(α,ηk) :=
∑n

i=1

∑
y 6=yi

αiy ΦΓk
yi,y

(xi)

and g(α,ηk) = − 1
2λ
‖ωk(α,ηk)‖

2 − 1
2λ
||ω(α)||2 +

∑n

i=1

∑
y 6=yi

αiy∆(y,yi). We have

max
θ,α

θ,

s.t. θ ≤ g(α,ηk), k = 1, · · · , t,

αi ≥ 0, i = 1, · · · , n.

which indeed is in the form of problem (8) by letting A be the domain of α. This completes the proof

and brings the connection between the primal and dual formulation.

E. Computation of Ω∗(z)

The conjugate of Ω(w) is defined as

Ω∗(z) = max
u,ω

w⊤z −

(
1

2
‖u‖2 +

σ

2λ
‖ω‖2 +

1

2
(

t∑

k=1

‖ωk‖)
2

)
.



Let z = [zu; zv], where zu and zv are vectors corresponding to u and ω, respectively. Let Υ(ω) =(
σ
2λ
‖ω − λzv

σ
‖2 + 1

2
(
∑t

k=1 ‖ωk‖)
2
)
. Ω∗(z) can be computed by

Ω∗(z) = argmax
u,ω

u⊤zu + ω⊤zv −

(
1

2
‖u‖2 +

σ

2λ
‖ω‖2 +

1

2
(

t∑

k=1

‖ωk‖)
2

)

=

[
argmin

u

(
1

2
‖u‖2 − u⊤zu

)
; argmin

ω
Υ(ω)

]

=
[
zu; argmin

ω
Υ(ω)

]
,

In other words, we just need to solve the following problem

min
ω

σ

2λ
‖ω −

λzv
σ

‖2 +
1

2

(
t∑

k=1

‖ωk‖

)2

. (23)

This is a strictly convex problem, and a unique minimizer can be computed in closed-form [24].

Proposition 3. Let ω̂ be an optimal solution of problem (23). Then, ω̂ is unique, and can be cheaply

calculated by Algorithm 3.

Algorithm 3 Computation of Ω∗(z).

Given z = [zu; zv], parameter s = λ
σ

and scalar T . Let ω = λzv

σ
.

1: Calculate ôk = ‖ωk‖, where ωk is associated with ωk for all k = 1, ..., T .

2: Sort ô to obtain ō such that ō(1) ≥ ... ≥ ō(T ).

3: Find ρ = max
{
t

∣∣∣ōk − s
1+ks

k∑
i=1

ōi > 0, k = 1, ..., T
}

.

4: Calculate a threshold value ς = s
1+ρs

ρ∑
i=1

ōi.

5: Compute o, where ok =

{
ôk − ς, if ôk > ς,

0, Otherwise.
.

6: Compute ω̂k =

{ ok
‖ωk‖

ωk, if ok > 0,

0, otherwise,

7: Let ω̂ = [ωk]k∈[T ]. Output Ω∗(z) = [zu; ω̂].

Proof. Please refer the proof in Appendix F of [24].

F. Proof of Proposition 2

Proof. Let P (w) = λ
2
‖u‖2 + λ

2
(
∑t

k=1 ‖ωk‖)
2 + 1

n

∑n

i=1 ξi, Q(w) = P (w) + σ
2
‖ω‖2 and Θ =

1
n

∑n

i=1(maxy 6=yi
∆(y,yi)) = P (0). Suppose w̄ is a minimizer of P (w). Then, we have P (w̄) ≤ P (0).

Accordingly, we have λ
2
||ω̄||2 ≤ λ

2
(
∑t

k=1 ‖ω̄k‖)
2 ≤ λ

2
(
∑t

k=1 ‖ω̄k‖)
2 + λ

2
‖ū‖2 ≤ P (w̄) ≤ Θ, which

implies that λ
2
||ω̄||2 ≤ Θ. Let w∗ be an ǫ

2
-accurate solution of (11). Then, we have Q(w∗) ≤ Q(w̄)+ ǫ

2
.

It follows that

P (w∗) ≤ Q(w∗) ≤ Q(w̄) +
ǫ

2
= P (w̄) +

σ

2
‖ω̄‖2 +

ǫ

2
.

By setting σ ≤ λǫ/2Θ, we have σ
2
‖ω̄‖2 ≤ ǫ

2
, and w∗ is an ǫ-accurate solution of (10).

G. Proof of Theorem 2

The proof can be adapted from the proof of Corollary 3 in [28].


