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We present some examples where the detection results of the RGB features are better than those of the CIELab features,

or vice versa, as shown in Figure 1. The empirical results demonstrate that we can obtain better saliency maps by utilizing

both RGB and CIELab features although they may be correlated.

(a) (b)

Figure 1. Left to right in (a) and (b): input, saliency maps generated by utilizing the RGB and CIELab features, respectively (using linear

SVM for both maps) and the ground truth. (a) shows the detection results using the RGB feature are better than those using the CIELab

feature and vice versa in (b).

In Figure 2(a), we provide the Precision and Recall (P-R) curves of the proposed bootstrap learning algorithm when each

of the three features (RGB, CIELab and LBP) is removed, respectively. These results show that each feature contributes to

detect salient objects. In addition, we show the P-R curve of the proposed method in comparison with those of single-scale

methods in Figure 2(b), which demonstrates the effects of the multiscale integration in the proposed method. These results

show that the efficiency of the proposed method could be largely improved by adopting only single scale at the expense of

some decrease in accuracy.

We clarify the details about the threshold setting for selecting the training set. As stated in Section 3.2 of the paper, we

compute the average saliency value for each superpixel and set two thresholds to generate the training set containing both

positive and negative samples. The superpixels with saliency values larger than the high threshold are labeled as the positive

samples with +1 while those with saliency values smaller than the low threshold as the negative samples labeled with −1.

The low threshold is set to 0.05 and it’s fixed for all images since the training set is not sensitive to the low threshold. The

high threshold is set empirically according to the results of Figure 3(a), which demonstrates that the proposed method with

the threshold of 1.5 times the average value over the whole weak saliency map performs best.

In Figure 3(b), we further show the comparative results of the proposed methods with different values set for the parameter
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Figure 2. (a) shows P-R curves of the proposed algorithms when each of the three features (RGB, CIELab and LBP) is removed,

respectively. (b) shows the P-R curves of the proposed method in comparison with those of single-scale methods, i.e., the input image is

over-segmented into 100, 150, 200, 250 superpixels, respectively.
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Figure 3. (a) shows P-R curves of the proposed algorithms when the high threshold is set to different values (T times of the average value

over the whole weak saliency map). (b) shows the P-R curves and the AUC values of the proposed methods when the parameter σ in (11)

is set to different values.

σ in (11), which illustrates that both the weak and strong saliency models contribute to the final results while the strong model

plays a more important role.

Figure 4 shows more saliency maps generated by the proposed method. These weak and strong saliency maps complement

each other in which weak maps are able to detect fine details and strong maps are able to detect global shapes.

We present more examples of saliency maps generated by the proposed approach and several state-of-the-art methods (the

number of these compared methods depends on whether the authors provide codes or provide results of their methods on

the corresponding datasets) on five datasets in Figure 5-9, where “wCO-b” indicates the wCO [15] model bootstrapped by

the proposed leaning approach and “GT” means the ground truth. Note that the ground truth results represented in grayscale

in Figure 6-8 are of more reliable since they are the average annotations from multiple subjects. Compared with the state-

of-the-arts, our methods (“Ours” and “wCO-b”) are able to detect both the salient objects and backgrounds, and are robust



(a) (b)

Figure 4. Saliency maps generated by the proposed bootstrap learning method. Brighter pixels indicate higher saliency values. Left to right

in (a) and (b): input, ground truth, weak saliency map, strong saliency map, and final saliency map.

to objects at different scales as well. The proposed bootstrap learning approach performs well when dealing with complex

images, i.e., images with multiple objects or complex backgrounds that could be easily mistakenly detected as salient objects.



input GS SP [11] wCO [15] LRMR [10] GMR [14] DSR [6] XL13 [12] HS [13] RC-J [3] GC [4] SF [9] Ours wCO-b GT

Figure 5. Comparison of our saliency maps with ten state-of-the-art methods on the ASD [1] dataset.



input GS SP [11] wCO [15] LRMR [10] GMR [14] DSR [6] XL13 [12] HS [13] RC-J [3] GC [4] SF [9] Ours wCO-b GT

Figure 6. Comparison of our saliency maps with ten state-of-the-art methods on the SOD [8] dataset.



input GS SP [11] wCO [15] LRMR [10] GMR [14] DSR [6] XL13 [12] HS [13] RC-J [3] GC [4] SF [9] DRFI [5] Ours wCO-b GT

Figure 7. Comparison of our saliency maps with eleven state-of-the-art methods on the SED2 [2] dataset.



input GS SP [11] wCO [15] LRMR [10] GMR [14] DSR [6] XL13 [12] HS [13] RC-J [3] GC [4] SF [9] Ours wCO-b GT

Figure 8. Comparison of our saliency maps with ten state-of-the-art methods on the Pascal-S [7] dataset.



input GS SP [11] wCO [15] LRMR [10] GMR [14] DSR [6] XL13 [12] HS [13] RC-J [3] GC [4] SF [9] Ours wCO-b GT

Figure 9. Comparison of our saliency maps with ten state-of-the-art methods on the THUS [3] dataset.
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