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Here we give a proof that the defined kernels for Gaus-
sian distributions in Sec.3 are valid kernels and analyze their
positive definiteness. In the following, we start with review-
ing some important definitions and theorems.

1. Background Theory

First, we give the definition of a positive definite (pd)
kernel.

Definition 1. Let X be a nonempty set. A function K :
X x X — R is a positive definite (pd) kernel on X if and
only if K is symmetric and

Z CiCjK(l’i,l'j) Z 0, (1)

i,j=1
foranyn € N, ¢y, ...,c, € Rand x4, ...,x, € X.

Then we define a related family of kernels which is
called negative definite (nd) kernel.

Definition 2. Let X be a nonempty set. A function K :
X x X — R is a negative definite (nd) kernel on X if and
only if K is symmetric and

Z ciciK(x;,xj) <0, ()

ij=1

orany n € N, ¢q,...,cp, € Rwith Y . ¢; = 0 and
y =1
T1,...,Ty € X.

We next recall from [3] and state a theorem that gives a
necessary and sufficient condition for obtaining a pd kernel
from a distance function.

Theorem 1. Let X be a nonempty set and f : X X
X — R be a symmetric function. Then the kernel func-
tion exp(—tf(x;,x;)) is pd for all t > 0 if and only if f is
nd.
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From Theorem 1, Jayasumana et al. proved the following
theorem in [1].

Theorem 2. Let X be a nonempty set, V be an inner
product space, and ¢ : X — V be a function. Then
[ X x X — Rdefined by f(xi, ) = ||[v(x:) — ¥ (z;) |3
is nd.

2. Positive definiteness of the kernels for Gaus-
sians

Because pd kernels can define valid Reproducing Kernel
Hilbert Space (RKHS) and further allow the kernel meth-
ods in Euclidean space to be generalized to nonlinear man-
ifolds, in this section we try to give a rigorous proof that
the proposed probabilistic kernels for Gaussian distribution-
s are pd.

2.1. Kullback-Leibler Kernel

Formally, given continuous probability distributions P
and @, their Kullback-Leibler Divergence (KLD) is formu-
lated by
P(z)
Q(z)

Kullback-Leibler kernel is defined as follows:

KLD(P|Q) = / P(z)In =~ dx. 3)

_KLD(P|Q) + KLD(Q||P)
2t2

Kkrp(P,Q) = exp( ), (4
where ¢ is the kernel width parameter. Hereinafter, it is sim-
ilarly used in the following kernel functions.

According to Theorem 1, for proving that Kullback-
Leibler kernel is pd for all t € R, we need to prove that the
symmetric form of KLD, i.e. KLD(P||Q)+KLD(Q|P) :
PxP +— R,isnd. Forany p;,...,p, € Pand oy, ..., €



R with ;" | a; = 0, we have:

>3 iy (KLD(pillp;) + KLD(p;]lps))
i=1 j=1

_ 2/Xf:§:aiaj (pi(x) In p;(‘r)> da

i=1j=1 p;(2)

— 2/X (jilaj :nzlaipi(m) Inp;(z) (5)
N i i aoypi(a) Inp; (:1:)) dz

i=1 j=1

- —2/Xzzal‘04jpi(x) Inp;(z)de

i=1 j=1

Since currently it is hard to theoretically prove that (5) is
nonpositive, we cannot justify the positive definiteness of
Kullback-Leibler kernel. But it can still be used as a valid
kernel and the numerical stability is guaranteed by shifting
the kernel width ¢ as [2]. Our empirical study also shows
that Kullback-Leibler kernel with a proper value of ¢ can be
always guaranteed to be pd in the experiments.

2.2. Bhattacharyya Kernel

Formally, given continuous probability distributions P
and @, their Bhattacharyya Distance (BD) is closely related
to their Bhattacharyya Coefficient (BC):

BD(P,Q) = —In(BC(P,Q)), (©)

where BC is defined as:
BC(P.Q) = [ VP@Q@)ds, %

Bhattacharyya kernel is defined as follows:

®)

Kpp(P,Q) = exp (—BD(P’Q)> :

2t2

According to Theorem 1, Bhattacharyya kernel is pd for
all t € R if and only if BD(P,Q) is nd, which can be
proved if BC'(P, Q) is pd. As for the positive definiteness
of BC(P,Q), we give a theorem in the following.

Theorem 3. Let P be a family of continuous probability
distributions defined over a nonempty set X. Then Bhat-
tacharyya Coefficient BC(P,Q) : P x P +— R defined by
(7) is symmetric and pd.

Proof. Ttis obvious that BC'(P, Q) is symmetric.

For any p1,...,pm € P and ay, ..., o, € R, we have

Zzaiag‘BC(Pmpj):/Xzzaioéj\/]?i(f)]?j(x)dm

i=1 j=1 i=1 j=1

N D) SN
i=1 j=1
m 2
:/X(zwm) do >0

Therefore, according to Definition 1, BO(P,Q)is pd. [

2.3. Hellinger Kernel

For two continuous probability distributions P and @),
Hellinger Distance (HD) is defined as follows:

HD(P,Q)=\/;/X(W—M)2M. ©)

According to the definition of BC and HD, HD can be also
associated with BC as follows:

We define Hellinger kernel as follows:

(1)

Kun(P,Q) = exp (—HDQ(RQ)) |

22

According to Theorem 1, for proving the positive defi-
niteness of Hellinger kernel, we only need to prove that
HD?(P,Q) is nd.

Theorem 4. Let P be a family of continuous probabili-
ty distributions defined over a nonempty set X. Then the
square of Hellinger Distance HD(P,Q) : P x P — R
defined by (10) is symmetric and nd.

Proof. It is obvious that H D?(P, () is symmetric.
For any py,...,p,y, € P and ay,...,q,, € R with



Yot o =0, we have

m m
Z Z aza; HD(pi, pj)
i=1 j=1
m m

=3[ B (VAT )

11]1

=3 [ Y () 4o 2o s

- /X S amle) - ii“iaﬁ\/m e
i=1j=1

i=1 j=1

m

- [ e mEI

—_/X (zi?m) dz <0

Therefore, according to Definition 2, H D?(P, Q) isnd. [

2.4. Kernel based on Lie Group

Given two D-dimensional Gaussian distributions g;, g;,
ie. gi(x) = N(z|pi, 25), g;(z) = N(z|pj, Z;), let P; and
P; denote the (D + 1) x (D + 1) SPD matrices correspond-
ing to them respectively. We review the definition of the
distance based on Lie Group (LGD) as follows:

LGD(P;, Py) = | log(Pi) —log(F;)| (12)
T
where P = |Z|7D1+1 = —;/TW ’If

Then we define Kernel based on Lie Group in the fol-
lowing to measure the similarity between Gaussians g; and

9j-

13)

LGD?(P;, P))
212

Krap(9i,95) = exp <—

According to Theorem 1, for proving the positive def-
initeness of Kernel based on Lie Group, we only need to
prove that LGD?(P;, P;) is nd. This is obviously true ac-
cording to Theorem 2.

2.5. Kernel based on Mahalanobis distance and
Log-Euclidean distance

Given two Gaussian distributions g;, g;, i.e. g;(z) =
N(z|pis 25), gj(z) = N(x|pj, B;), we first recall the ker-
nel for mean vectors and covariance matrices respectively.
The kernel based on Mahalanobis Distance (MD) for mean
vectors is formulated as

2(,,. .
MD (m,ug)>’ (14)

Kprp (s, ptj) = exp ( 22

where

MD (i, ) = £/ (s

and the kernel based on Log-Euclidean distance (LED) for
covariance matrices is defined by

LED2(%;,%;
LED %) J>>, (16)

— )T (S + 57 (i — ), (15)

KLED(Ei> Ej) = exp (—
where

A7)

LED(%;,%;) = || log(¥;) — log(

i)lle-
Then we linearly combine them to form the kernel based on
MD and LED for Gaussian distributions g; and g;.

Kyp+rep(9:, 95)

1
= y1Kmp (i, 1) + 72 Krep(Ei, Zj). (%)
where «y; and +y; are the combination coefficients.

We first need to state that the kernel based on MD and
that based on LED are both valid kernels. Since the square
of LED is obviously nd, according to Theorem 2, the kernel
based on LED is pd. Though there is little understanding
about the positive definiteness of the kernel based on MD,
we can make it pd by properly choosing the kernel width
parameter similar to the Kullback-Leibler Kernel. Finally
according to [4], the superposition of the two pd kernels is
a new valid kernel.
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