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Here we give a proof that the defined kernels for Gaus-

sian distributions in Sec.3 are valid kernels and analyze their

positive definiteness. In the following, we start with review-

ing some important definitions and theorems.

1. Background Theory

First, we give the definition of a positive definite (pd)

kernel.

Definition 1. Let X be a nonempty set. A function K :
X × X 7→ R is a positive definite (pd) kernel on X if and

only if K is symmetric and

n
∑

i,j=1

cicjK(xi, xj) ≥ 0, (1)

for any n ∈ N, c1, ..., cn ∈ R and x1, ..., xn ∈ X .

Then we define a related family of kernels which is

called negative definite (nd) kernel.

Definition 2. Let X be a nonempty set. A function K :
X × X 7→ R is a negative definite (nd) kernel on X if and

only if K is symmetric and

n
∑

i,j=1

cicjK(xi, xj) ≤ 0, (2)

for any n ∈ N, c1, ..., cn ∈ R with
∑n

i=1
ci = 0 and

x1, ..., xn ∈ X .

We next recall from [3] and state a theorem that gives a

necessary and sufficient condition for obtaining a pd kernel

from a distance function.

Theorem 1. Let X be a nonempty set and f : X ×
X 7→ R be a symmetric function. Then the kernel func-

tion exp(−tf(xi, xj)) is pd for all t > 0 if and only if f is

nd.

From Theorem 1, Jayasumana et al. proved the following

theorem in [1].

Theorem 2. Let X be a nonempty set, V be an inner

product space, and ψ : X 7→ V be a function. Then

f : X ×X 7→ R defined by f(xi, xj) = ‖ψ(xi)−ψ(xj)‖
2
V

is nd.

2. Positive definiteness of the kernels for Gaus-

sians

Because pd kernels can define valid Reproducing Kernel

Hilbert Space (RKHS) and further allow the kernel meth-

ods in Euclidean space to be generalized to nonlinear man-

ifolds, in this section we try to give a rigorous proof that

the proposed probabilistic kernels for Gaussian distribution-

s are pd.

2.1. Kullback­Leibler Kernel

Formally, given continuous probability distributions P

and Q, their Kullback-Leibler Divergence (KLD) is formu-

lated by

KLD(P‖Q) =

∫

P (x) ln
P (x)

Q(x)
dx. (3)

Kullback-Leibler kernel is defined as follows:

KKLD(P,Q) = exp(−
KLD(P‖Q) +KLD(Q‖P )

2t2
), (4)

where t is the kernel width parameter. Hereinafter, it is sim-

ilarly used in the following kernel functions.

According to Theorem 1, for proving that Kullback-

Leibler kernel is pd for all t ∈ R, we need to prove that the

symmetric form of KLD, i.e.KLD(P‖Q)+KLD(Q‖P ) :
P×P 7→ R, is nd. For any p1, ..., pm ∈ P and α1, ..., αm ∈
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R with
∑m

i=1
αi = 0, we have:

m
∑

i=1

m
∑

j=1

αiαj (KLD(pi‖pj) +KLD(pj‖pi))

= 2

∫

X

m
∑

i=1

m
∑

j=1

αiαj

(

pi(x) ln
pi(x)

pj(x)

)

dx

= 2

∫

X

( m
∑

j=1

αj

m
∑

i=1

αipi(x) ln pi(x)

−
m
∑

i=1

m
∑

j=1

αiαjpi(x) ln pj(x)

)

dx

= −2

∫

X

m
∑

i=1

m
∑

j=1

αiαjpi(x) ln pj(x)dx

(5)

Since currently it is hard to theoretically prove that (5) is

nonpositive, we cannot justify the positive definiteness of

Kullback-Leibler kernel. But it can still be used as a valid

kernel and the numerical stability is guaranteed by shifting

the kernel width t as [2]. Our empirical study also shows

that Kullback-Leibler kernel with a proper value of t can be

always guaranteed to be pd in the experiments.

2.2. Bhattacharyya Kernel

Formally, given continuous probability distributions P

and Q, their Bhattacharyya Distance (BD) is closely related

to their Bhattacharyya Coefficient (BC):

BD(P,Q) = − ln(BC(P,Q)), (6)

where BC is defined as:

BC(P,Q) =

∫

√

P (x)Q(x)dx. (7)

Bhattacharyya kernel is defined as follows:

KBD(P,Q) = exp

(

−
BD(P,Q)

2t2

)

. (8)

According to Theorem 1, Bhattacharyya kernel is pd for

all t ∈ R if and only if BD(P,Q) is nd, which can be

proved if BC(P,Q) is pd. As for the positive definiteness

of BC(P,Q), we give a theorem in the following.

Theorem 3. Let P be a family of continuous probability

distributions defined over a nonempty set X . Then Bhat-

tacharyya Coefficient BC(P,Q) : P × P 7→ R defined by

(7) is symmetric and pd.

Proof. It is obvious that BC(P,Q) is symmetric.

For any p1, ..., pm ∈ P and α1, ..., αm ∈ R, we have

m
∑

i=1

m
∑

j=1

αiαjBC(pi, pj) =

∫

X

m
∑

i=1

m
∑

j=1

αiαj

√

pi(x)pj(x)dx

=

∫

X

m
∑

i=1

αi

√

pi(x)
m
∑

j=1

αj

√

pj(x)dx

=

∫

X

(

m
∑

i=1

αi

√

pi(x)

)2

dx ≥ 0

Therefore, according to Definition 1, BC(P,Q) is pd.

2.3. Hellinger Kernel

For two continuous probability distributions P and Q,

Hellinger Distance (HD) is defined as follows:

HD(P,Q) =

√

1

2

∫

X

(

√

P (x)−
√

Q(x)
)2

dx. (9)

According to the definition of BC and HD, HD can be also

associated with BC as follows:

HD(P,Q) =
√

1−BC(P,Q). (10)

We define Hellinger kernel as follows:

KHD(P,Q) = exp

(

−
HD2(P,Q)

2t2

)

. (11)

According to Theorem 1, for proving the positive defi-

niteness of Hellinger kernel, we only need to prove that

HD2(P,Q) is nd.

Theorem 4. Let P be a family of continuous probabili-

ty distributions defined over a nonempty set X . Then the

square of Hellinger Distance HD(P,Q) : P × P 7→ R

defined by (10) is symmetric and nd.

Proof. It is obvious that HD2(P,Q) is symmetric.

For any p1, ..., pm ∈ P and α1, ..., αm ∈ R with
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∑m

i=1
αi = 0, we have

m
∑

i=1

m
∑

j=1

αiαjHD
2(pi, pj)

=
1

2

∫

X

m
∑

i=1

m
∑

j=1

αiαj

(

√

pi(x)−
√

pj(x)

)2

dx

=
1

2

∫

X

m
∑

i=1

m
∑

j=1

αiαj

(

pi(x) + pj(x)− 2
√

pi(x)pj(x)

)

dx

=

∫

X





m
∑

i=1

αi

m
∑

j=1

αjpj(x)−
m
∑

i=1

m
∑

j=1

αiαj

√

pi(x)pj(x)



 dx

= −

∫

X

m
∑

i=1

αi

√

pi(x)

m
∑

j=1

αj

√

pj(x)dx

= −

∫

X

(

m
∑

i=1

αi

√

pi(x)

)2

dx ≤ 0

Therefore, according to Definition 2,HD2(P,Q) is nd.

2.4. Kernel based on Lie Group

Given two D-dimensional Gaussian distributions gi, gj ,

i.e. gi(x) = N (x|µi,Σi), gj(x) = N (x|µj ,Σj), let Pi and

Pj denote the (D+1)× (D+1) SPD matrices correspond-

ing to them respectively. We review the definition of the

distance based on Lie Group (LGD) as follows:

LGD(Pi, Pj) = ‖ log(Pi)− log(Pj)‖F , (12)

where P = |Σ|−
1

D+1

(

Σ+ µµT µ

µT 1

)

.

Then we define Kernel based on Lie Group in the fol-

lowing to measure the similarity between Gaussians gi and

gj .

KLGD(gi, gj) = exp

(

−
LGD2(Pi, Pj)

2t2

)

(13)

According to Theorem 1, for proving the positive def-

initeness of Kernel based on Lie Group, we only need to

prove that LGD2(Pi, Pj) is nd. This is obviously true ac-

cording to Theorem 2.

2.5. Kernel based on Mahalanobis distance and
Log­Euclidean distance

Given two Gaussian distributions gi, gj , i.e. gi(x) =
N (x|µi,Σi), gj(x) = N (x|µj ,Σj), we first recall the ker-

nel for mean vectors and covariance matrices respectively.

The kernel based on Mahalanobis Distance (MD) for mean

vectors is formulated as

KMD(µi, µj) = exp

(

−
MD2(µi, µj)

2t2

)

, (14)

where

MD(µi, µj) =
√

(µi − µj)T (Σ
−1

i +Σ−1

j )(µi − µj), (15)

and the kernel based on Log-Euclidean distance (LED) for

covariance matrices is defined by

KLED(Σi,Σj) = exp

(

−
LED2(Σi,Σj)

2t2

)

, (16)

where

LED(Σi,Σj) = ‖ log(Σi)− log(Σj)‖F . (17)

Then we linearly combine them to form the kernel based on

MD and LED for Gaussian distributions gi and gj .

KMD+LED(gi, gj)

= γ1KMD(µi, µj) + γ2KLED(Σi,Σj).
(18)

where γi and γj are the combination coefficients.
We first need to state that the kernel based on MD and

that based on LED are both valid kernels. Since the square
of LED is obviously nd, according to Theorem 2, the kernel
based on LED is pd. Though there is little understanding
about the positive definiteness of the kernel based on MD,
we can make it pd by properly choosing the kernel width
parameter similar to the Kullback-Leibler Kernel. Finally
according to [4], the superposition of the two pd kernels is
a new valid kernel.
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