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1. Deep Context Model

1.1. Conditional Distributions of Different Units

Given the deep context model defined in the paper, we further provide the conditional distributions of different units given

their adjacent units as:

P (hpi = 1|p,hr) = σ(
∑

j

W 1
jipj/σpj +

∑

k

Q1
ikhrk + bhpi) (1)

P (hoj = 1|o,hr) = σ(
∑

i

W 2
ijoi/σoi +

∑

k

Q2
jkhrk + bhoj) (2)

P (hrk = 1|hp,ho,y) = σ(
∑

i

Q1
ikhpi +

∑

j

Q2
jkhoj +

∑

k′

Lkk′yk′ + bhrk) (3)

P (yk = 1|e, c,hr,hs,y−1) =

exp(
∑

f U
1
fkẽf +
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where σ(x) = 1/(1 + exp(−x)) is the logistic function. In Equation 4, yk = 1 would indicate the remaining units in y to be

zero since y is defined through the 1-of-K coding scheme to indicate the class label for the current event sequence. The same

rule is applied to Equation 5 and Equation 6. These conditional distributions are used in different phrase in the learning and

inference of the model as discussed in the following.

1.2. Model Learning

Here, we given more details on the approximate learning of the proposed deep context model. Specifically, for estimating

the data-dependent expectation, we replace the true posterior P (h|v; θ) by the variational posterior Q(h|v;µ). The mean-

field approximation assumes all the hidden units are fully factorized as:
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where µ = {µp,µo,µr,µs} are the mean field variational parameters with q(hi = 1) = µi. The estimation then proceeds

by finding the parameters µ that maximizes the variational lower bound of the log conditional likelihood for fixed θ, which

results in iteratively updating µ for different hidden units through the mean-field fixed point equations.

For estimating the model’s expectation, we use the MCMC based stochastic approximation procedure. It first randomly
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by running a Gibbs sampler with conditional distributions given in Equations 1 to 12. The M sampled Markov particles are

then used to estimate the model’s expectation in the corresponding step of the model optimization.

1.3. Model Inference

The detailed algorithm for inferring the probability P (yk = 1|e, c,p,o, s,m−1; θ) through Gibbs sampling is summarized

in Algorithm 1.

Algorithm 1: Inference of P (y|e, c,p,o, s,m−1) with Gibbs sampling.

Data: the input observation vectors e, c, p, o, s, and m−1 for the query event sequence; model parameter set θ
Result: P (yk = 1|e, c,p,o, s,m−1; θ) for k = 1, . . . ,K
for chain = 1 → C do

Randomly initialize h0
p, h0

o and y0;

for t = 0 → T do

Sample ht
r given ht

p, ht
o, and yt with Equation 3;

Sample ht+1
p given ht

r and p with Equation 1;

Sample ht+1
o given ht

r and o with Equation 2;

Sample ht+1
s given yt and s with Equation 7;

Sample yt+1

−1 given yt and m−1 with Equation 5;

Sample yt+1 given ht
r, ht+1

s , yt+1

−1 , e and c with Equation 4;

end

end

Collect the last T ′ samples of y from each chain;

Calculate P (y|e, c,p,o, s,m−1) with the collected samples;
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