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Abstract

This is the supplement for our main paper “New Insights

into Laplacian Similarity Search” [3]. Here, we show the

proofs of all the theoretical arguments in the main paper.

Proof of Statements in Sec. 2.1: M is positive and sym-

metric, i.e., ∀i, j, mij > 0, and mij = mji. Regardless of

Λ, mii is always the unique largest element in the i-th col-

umn and row of M .

Proof. (a) Since L+ αΛ is symmetric, M = (L+ αΛ)−1

is symmetric.

(b) Note that

M = (L+ αΛ)−1 = (D + αΛ−W )−1

= (I − (D + αΛ)−1W )−1(D + αΛ)−1

=

(

∞
∑

k=0

[((D + αΛ)−1)W ]k

)

(D + αΛ)−1,

from which we can see that M is positive since the graph is

connected.

(c) Now we show that mjj is the unique largest in its col-

umn. Assume, to the contrary, there exists i, j, i 6= j, such

that mjj ≤ mij . Denote k = argmaxi 6=j mij . Note that

M is symmetric and M > 0. Let B = (bij) := D + αΛ−
W . Note that B is symmetric and strictly diagonally domi-

nant, i.e., ∀k, bkk >
∑

i 6=k |bki|. By BM = I , we have 0 =
B(k, :)M(:, j) =

∑

i bkimij = bkkmkj +
∑

i 6=k bkimij ≥
bkkmkj − (

∑

i 6=k |bki|)mkj = (bkk−
∑

i 6=k |bki|)mkj > 0,

which contradicts the assumption.

Proof of Theorem 2.1:

M = C + E, where C =
1

α
∑

i λi
11

⊤, and E =

Λ− 1

2

(

n
∑

i=2

1

γi + α
uiu

⊤
i

)

Λ− 1

2 .

Proof. By definition,

M = (L+ αΛ)−1

= Λ− 1

2 (Λ− 1

2LΛ− 1

2 + αI)−1Λ− 1

2

= Λ− 1

2

(

n
∑

i=1

(γi + α)uiui
⊤

)−1

Λ− 1

2

= Λ− 1

2

(

n
∑

i=1

1

γi + α
uiui

⊤

)

Λ− 1

2

=
1

α
∑

i λi
11

⊤ + Λ− 1

2

(

n
∑

i=2

1

γi + α
uiu

⊤
i

)

Λ− 1

2 .

Proof of Corollary 2.2: lim
α→0

E = Λ− 1

2 L̄†Λ− 1

2 .

Proof. It follows from L̄† =
∑n

i=2
1
γi
uiu

⊤
i .

Proof of Statements in Sec. 2.1:

Ranking by (hij)i=1,...,n is equivalent as ranking by the j-th

column of D− 1

2L†
symD− 1

2 .

Proof. Let ei denote the i-th unit vector in R
n. The hitting

time that a random walk from vertex i to hit vertex j can be

computed by [1]:

Hij = d(V)〈 1
√

dj
ej , L

†
sym(

1
√

dj
ej −

1√
di
ei)〉

= d(V)
(

1

dj
ej

⊤L†
symej −

1
√

didj
ei

⊤L†
symej

)

.

Thus given j, ranking by (hij)i=1,...,n is determined

by − 1√
didj

ei
⊤L†

symej . Denote by B = (bij) :=

D− 1

2L†
symD− 1

2 . Then bij = 1√
didj

ei
⊤L†

symej . This

shows that ranking by (hij)i=1,...,n in ascending order is

the same as ranking by (bij)i=1,...,n in descending order.

Note that a smaller hij means vertices i and j are closer on

the graph.
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Proof of Lemma 3.1: (a) [2] Lf(Sk) =
∑

j∈S̄k
a1j ,

(b) limα→0 Lf(Sk) = λ(S̄k)/λ(V), 1 ≤ k ≤ n.

Proof. (a) Recall that f is the first column of M = (L +
αΛ)−1. We have (L+ αΛ)f = e1, which can be written as:

∑

j 6=1

w1j(f1 − fj) = 1− αλ1f1, (1)

∑

j 6=i

wij(fi − fj) = −αλifi, i 6= 1. (2)

By Eq. (1) and Eq. (2), we have

Lf(Sk) =

k
∑

i=1

∑

j 6=i

wij(fi − fj) = 1−
k
∑

i=1

αλifi

= 1−
∑

j∈Sk

a1j =
∑

j∈S̄k

a1j . (3)

Note that in Eq. (3), since A = (aij) = (L + αΛ)−1αΛ,

αλifi = a1i. We also use the fact that
∑

j a1j = 1.

(b) By Theorem 2.1.,

A = (L+ αΛ)−1αΛ

=
1

∑

i λi
11

⊤Λ + αΛ− 1

2

(

n
∑

i=2

1

γi + α
uiu

⊤
i

)

Λ
1

2 .

Therefore, limα→0 A = 1∑
i
λi
11

⊤Λ. By Eq. (3), we have

limα→0 Lf(Sk) = λ(S̄k)/λ(V).

Proof of Theorem 3.4: Rf(Sc) < 1/(c− 1).

Proof. Since Lf(Sk) =
∑

j∈S̄k
a1j strictly decreases when

k increases, ∀k < c, Lf(Sc) < Lf(Sk).

Proof of Theorem 3.5:

(a) If di = b, ∀i, for some constant b, then

limα→0 Ri(Sc) = limα→0 Rd(Sc).

(b) Suppose for 1 ≤ k < c, d(Sc\Sk)
|Sc\Sk|

> d(S̄c)
|S̄c|

. Then

limα→0 Ri(Sc) > limα→0 Rd(Sc).

(c) Suppose for 1 ≤ k < c, d(Sc\Sk)
|Sc\Sk|

< d(S̄c)
|S̄c|

. Then

limα→0 Ri(Sc) < limα→0 Rd(Sc).

Proof. (a) It follows from d(S̄k) = b|S̄k|, for 1 ≤ k ≤ c.

(b) Since for 1 ≤ k < c, d(Sc\Sk)
d(S̄c)

> |Sc\Sk|
|S̄c|

, we have

d(S̄k)
d(S̄c)

= d(Sc\Sk)+d(S̄c)
d(S̄c)

> |Sc\Sk|+|S̄c|
|S̄c|

= |S̄k|
|S̄c|

.

(c) The proof is similar to that of (b).

Proof of Lemma 3.6:

lim
d(Sc)/d(S̄c)→0

lim
α→0

Rd(Sc) =
1

c− 1
.

Proof. 1
limα→0 Rd(Sc)

=
∑c−1

k=1
d(S̄k)

d(S̄c)
=

∑c−1

k=1
(d(Sc\Sk)+d(S̄c))

d(S̄c)
= c − 1 +

∑c−1

k=1
d(Sc\Sk)

d(S̄c)
. As

d(Sc)
d(S̄c)

→ 0, we have
d(Sc\Sk)
d(S̄c)

→ 0 for k < c, which

completes the proof.

Proof of Lemma 3.7: lim
d(Sc)/d(S̄c)→∞

lim
α→0

Rd(Sc) = 0,

if d1 < td(Sc) for a fixed scalar t, 0 < t < 1.

Proof. 1
limα→0 Rd(Sc)

=
∑c−1

k=1
d(S̄k)

d(S̄c)
≥ d(S̄1)

d(S̄c)
≥

d(S̄1)+d1−d1

d(S̄c)
≥ d(Sc)−d1

d(S̄c)
≥ (1−t)d(Sc)

d(S̄c)
→ ∞, as

d(Sc)
d(S̄c)

→
∞.

Proof of Theorem 3.8: Suppose for 1 ≤ k <

c, d(Sc\Sk)
|Sc\Sk|

< d(S′\Sc)+τd̂
|S̄c|

. Then limα→0 Ri(Sc) <

limα→0 Rh(Sc).

Proof. Since for 1 ≤ k < c, d(Sc\Sk)

d(S′\Sc)+τd̂
<

|Sc\Sk|
|S̄c|

, we have
d(S′\Sk)+τd̂

d(S′\Sc)+τd̂
= d(Sc\Sk)+d(S′\Sc)+τd̂

d(S′\Sc)+τd̂
<

|Sc\Sk|+|S̄c|
|S̄c|

= |S̄k|
|S̄c|

. Therefore, for 1 ≤ k < c,

d(S′\Sc)+τd̂

d(S′\Sk)+τd̂
> |S̄c|

|S̄k|
. This proves limα→0 Ri(Sc) <

limα→0 Rh(Sc).

Proof of Lemma 3.9:

lim
maxi∈Sc di/d̂→0

lim
α→0

Rh(Sc) =
1

c− 1
.

Proof. 1
limα→0 Rh(Sc)

= d(S′\Sk)+τd̂

d(S′\Sc)+τd̂
=

∑c−1

k=1
(d(Sc\Sk)+d(S′\Sc)+τd̂)

d(S′\Sc)+τd̂
= c − 1 +

∑c−1

k=1
d(Sc\Sk)

d(S′\Sc)+τd̂
.

As
maxi∈Sc di

d̂
→ 0, we have

d(Sc\Sk)

d(S′\Sc)+τd̂
→ 0 for k < c,

which completes the proof.

Proof of Theorem 3.10: Suppose for 1 ≤ k < c,
d(Sc\Sk)
|Sc\Sk|

> d(S̄c)

|S∗\Sc|+d(S̄∗)/d̂
. Then limα→0 Rh(Sc) >

limα→0 Rd(Sc).

Proof. Since for 1 ≤ k < c, d(Sc\Sk)
d(S̄c)

>

|Sc\Sk|d̂

|S∗\Sc|d̂+d(S̄∗)
, we have

d(S̄k)
d(S̄c)

= d(Sc\Sk)+d(S̄c)
d(S̄c)

>

|Sc\Sk|d̂+|S∗\Sc|d̂+d(S̄∗)

|S∗\Sc|d̂+d(S̄∗)
= |S∗\Sk|d̂+d(S̄∗)

|S∗\Sc|d̂+d(S̄∗)
. Therefore, for

1 ≤ k < c, d(S̄c)
d(S̄k)

< |S∗\Sc|d̂+d(S̄∗)

|S∗\Sk|d̂+d(S̄∗)
. This proves

limα→0 Rd(Sc) < limα→0 Rh(Sc).
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