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We present the implementation details of our object cat-

egory recognition framework and additional qualitative ex-

amples on the KITTI dataset [5] and the OutdoorScene

dataset [8] in this supplementary material.

1. Implementation Details

1.1. Voxelization

In building the 3D voxel exemplars, we voxelize a 3D

CAD model into a distribution of 3D voxels. Since 3D CAD

models from the web repositories, such as the Trimble 3D

Warehouse [1], are usually irregular and not water-tight. We

employ the volumetric depth map fusion technique, which

is widely used in dense 3D reconstruction in the literature

[7], to build the voxel representation of a 3D CAD model.

Fig. 1 illustrates our voxelization process. We first render

depth images of a CAD model from different viewpoints

(Fig. 1(a)). In our implementation, we render from 8 az-

imuths and 6 elevations, which produces 48 depth images.

Then we fuse these depth images to obtain a 3D point cloud

on the surface of the object (Fig. 1(b)). Finally, we vox-

elize the 3D space and determine which voxels are inside

or outside the object using the surface point cloud (Fig.

1(c)). We experimented with different sizes of the 3D voxel

space. There is a tradeoff between computational efficiency

and representation power according to different sizes of 3D

voxel space. We found that a 50 × 50 × 50 voxel space

works well in our experiments.

1.2. 3D Clustering

We discover 3D Voxel Patterns (3DVPs) by clustering

3D voxel exemplars in a uniform 3D space. We first review

the similarity metric between two exemplars defined in our

paper. A 3D voxel exemplar is represented by a feature vec-

tor x with dimension N3, where N denotes the size of the

3D voxel space. The elements of the feature vector takes

values from a finite set S = {0, 1, 2, 3, 4}, which encodes

the visibility of the voxels, i.e., 0 for empty voxels, 1 for

visible voxels, 2 for self-occluded voxels, 3 for voxels oc-

cluded by other objects, and 4 for truncated voxels. The
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Figure 1. Illustration of volumetric depth map fusion to voxelize a

CAD model. (a) We render depth images of the CAD from differ-

ent viewpoints. (b) We fuse all the depth images to obtain the 3D

point cloud on the surface the object. (c) Using the surface points,

we voxlize the 3D space and determine which voxels are inside or

outside the object.

Mean voxel model

Figure 2. The mean voxel car model obtained by averaging 7 dif-

ferent 3D CAD model of cars. We simply aggregate all the oc-

cupied voxels from all the CAD models, and retain voxels shared

by at least K models in the mean model, where K = 2 in our

implementation.

similarity metric between two feature vectors x1 and x2 of

two 3D voxel exemplars is defined as:
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where xi
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are the ith element of x1 and x2 respec-

tively, ✶ is the indicator function, and w(i) is the weight for

voxel status i.
The definition in Eq. (1) is general such that the weights

can be designed for different applications. In our imple-

mentation, for object categories with small intra-class vari-

ations, such as cars, we propose to use a mean voxel rep-

resentation as show in Fig. 2. Besides using the closest

3D CAD models, all the 3D voxel exemplars are also rep-

resented with the mean voxel model which is only used in

the 3D clustering process. Specifically, we assign visibility
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labels to the mean voxel model for each exemplar according

to its 2D segmentation mask in the same way as we build the

3D voxel exemplar. As a result, we marginalize the shape

variation in the 3D clustering process, i.e., the voxel space

is reduced to all the occupied voxels of the mean model and

S = {1, 2, 3, 4}. So the 3D clustering generates patterns

which are consistent in terms of 3D object pose, occlusion

and truncation. In our implementation, we simply define

all the weights for voxel status to be 1/4. Before applying

the clustering algorithm, we do left-right flipping for each

object instance in order to double the number of 3D voxel

exemplars in training.

1.3. Training 3DVP Detectors

In training an ACF [2] detector for a 3DVP, we use all the

image patches in the cluster of the 3DVP as positive exam-

ples, and negative examples are harvested from the positive

images. For car detection in the KITTI dataset [5], a neg-

ative bounding box is used if its overlap with any positive

bounding box is less than 60%. Note that car detection in

KITTI requires 70% bounding box overlap with the ground

truth annotation. After training all the 3DVP detectors, we

can apply them to test images. As aslo noted in [6], we find

out that it is not necessary to carefully calibrate the detec-

tion scores among the ACF detectors.

2. Additional Qualitative Results

2.1. 3DVPs from the KITTI Dataset

Fig. 3, Fig. 4 and Fig. 5 show all the 227 3DVPs we

built from the KITTI training set. These 3DVPs are ob-

tained by clustering 57,224 3D voxel exemplars with the

affinity propagation algorithm [4]. Among the 227 3DVPs,

91 3DVPs are fully visible, 121 3DVPs are partially oc-

cluded and 15 3DVPs are truncated. As we can see from

the figures, 3DVPs capture various viewpoints, occlusion

patterns and truncation patterns of the object category.

2.2. Results on the KITTI Dataset

Fig. 6 and Fig. 8 show additional qualitative results for

car recognition on our validation split of the KITTI dataset,

where we compare our method w/wo occlusion reasoning

and DPM [3] in terms of 2D recognition and 3D localiza-

tion. As we can see, severe false alarms are removed with

occlusion reasoning. Fig. 10 and Fig. 11 show additional

qualitative results on the KITTI test set. Our method is able

to recognize detailed 2D/3D properties of the objects.

2.3. Results on the OutdoorScene Dataset

Fig. 12 and Fig. 13 show qualitative results for car

recognition on the OutdoorScene dataset [8], where detec-

tions at 1 false positive per image (fppi) are displayed for

each image. Note that we directly apply the 3DVP detectors

trained on the KITTI dataset to the OutdoorScene dataset.

As we can see from these qualitative results, our 3DVP de-

tectors can generalize to different scenarios, such as city and

parking lots scenes.
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Figure 3. Visualization of the first 76 3DVPs among the 227 3DVPs we built from the KITTI training set. We show the 3D mean voxel

model of the cluster center, the average RGB image, and the average gradient image of each 3DVP. Green, red and cyan voxels are visible,

occluded and truncated respectively.



Figure 4. Visualization of the second 76 3DVPs among the 227 3DVPs we built from the KITTI training set. We show the 3D mean voxel

model of the cluster center, the average RGB image, and the average gradient image of each 3DVP. Green, red and cyan voxels are visible,

occluded and truncated respectively.



Figure 5. Visualization of the last 75 3DVPs among the 227 3DVPs we built from the KITTI training set. We show the 3D mean voxel

model of the cluster center, the average RGB image, and the average gradient image of each 3DVP. Green, red and cyan voxels are visible,

occluded and truncated respectively.
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Figure 6. Car recognition results on the KITTI validation set. We compare our method w/wo occlusion reasoning and DPM [3]. Detections

at 1 false positive per image (fppi) for the three methods are shown. Blue regions in the images are the estimated occluded areas. Note that

severe false alarms in NMS disappear with occlusion reasoning. Please see Fig. 7 for the zoomed in 3D localization results.
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Figure 7. Zoomed in version of the 3D localization results in Fig. 6.
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Figure 8. Car recognition results on the KITTI validation set. We compare our method w/wo occlusion reasoning and DPM [3]. Detections

at 1 false positive per image (fppi) for the three methods are shown. Blue regions in the images are the estimated occluded areas. Note that

severe false alarms in NMS disappear with occlusion reasoning. Please see Fig. 9 for the zoomed in 3D localization results.
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Figure 9. Zoomed in version of the 3D localization results in Fig. 8.



Figure 10. 2D recognition and 3D localization results on the KITTI test set. Detections at 1 false positive per image (fppi) are shown. Blue

regions in the images are the estimated occluded areas.



Figure 11. 2D recognition and 3D localization results on the KITTI test set. Detections at 1 false positive per image (fppi) are shown. Blue

regions in the images are the estimated occluded areas.



missed ground truth2D recognition color code: true positive false alarm

Figure 12. 2D recognition results on the OutdoorScene dataset. Detections at 1 false positive per image (fppi) are shown. Blue regions in

the images are the estimated occluded areas.
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Figure 13. 2D recognition results on the OutdoorScene dataset. Detections at 1 false positive per image (fppi) are shown. Blue regions in

the images are the estimated occluded areas.


