

Defocus Deblurring and Superresolution for Time-of-Flight Depth Cameras (Supplementary)

Lei Xiao^{2,1} Felix Heide^{2,1} Matthew O'Toole³ Andreas Kolb⁴ Matthias B. Hullin⁵

Kyros Kutulakos³ Wolfgang Heidrich^{1,2}

¹KAUST ²University of British Columbia ³University of Toronto ⁴University of Siegen

⁵University of Bonn

1. Algorithm Details

This section provides implementation details for Algo. 2 (Amplitude update) and Algo. 3 (Depth update) in the main paper. The symbol ∇ defines the derivative operator, \mathbf{T} defines the matrix transpose, and \mathbf{I} defines the identity matrix.

Algo. 2, Line 2:

$$\mathbf{a} = \underset{\mathbf{a}}{\operatorname{argmin}} \rho \|\mathbf{c} - \mathbf{A}\mathbf{a}\|_2^2 + \lambda_1 \rho_a \|\nabla \mathbf{a} - \mathbf{y} - \mathbf{p}_1 + \mathbf{u}_1\|_2^2 \quad (1)$$

equals to the solution of the linear equation system:

$$(\rho \mathbf{A}^T \mathbf{A} + \lambda_1 \rho_a \nabla^T \nabla) \mathbf{a} = \rho \mathbf{A}^T \mathbf{c} + \lambda_1 \rho_a \nabla^T (\mathbf{y} + \mathbf{p}_1 - \mathbf{u}_1) \quad (2)$$

and we solve it by the left division function in Matlab.

Algo. 2, Line 3:

$$\mathbf{y} = \underset{\mathbf{y}}{\operatorname{argmin}} \lambda_1 \|\nabla \mathbf{a} - \mathbf{y} - \mathbf{p}_1 + \mathbf{u}_1\|_2^2 + \lambda_2 \|\nabla \mathbf{y} - \mathbf{p}_2 + \mathbf{u}_2\|_2^2 \quad (3)$$

equals to the solution of the linear equation system:

$$(\lambda_1 \mathbf{I} + \lambda_2 \nabla^T \nabla) \mathbf{y} = \lambda_1 (\nabla \mathbf{a} - \mathbf{p}_1 + \mathbf{u}_1) + \lambda_2 \nabla^T (\mathbf{p}_2 - \mathbf{u}_2) \quad (4)$$

and solved by the left division function in Matlab.

Algo. 2, Line 4:

$$\mathbf{p}_1 = \underset{\mathbf{p}_1}{\operatorname{argmin}} \|\mathbf{p}_1\|_1 + \rho_a \|\nabla \mathbf{a} - \mathbf{y} - \mathbf{p}_1 + \mathbf{u}_1\|_2^2 \quad (5)$$

is a soft shrinkage problem and has closed form solution:

$$\mathbf{p}_1 = \text{soft-shrinkage}(\nabla \mathbf{a} - \mathbf{y} + \mathbf{u}_1, \frac{0.5}{\rho_a}) \quad (6)$$

where the soft-shrinkage operator is defined as:

$$\text{soft-shrinkage}(\mathbf{x}, \epsilon) = \begin{cases} \mathbf{x} + \epsilon; \mathbf{x} < -\epsilon \\ 0; -\epsilon \leq \mathbf{x} \leq \epsilon \\ \mathbf{x} - \epsilon; \mathbf{x} > \epsilon \end{cases} \quad (7)$$

Algo. 2, Line 5:

$$\mathbf{p}_2 = \operatorname{argmin}_{\mathbf{p}_2} \|\mathbf{p}_2\|_1 + \rho_a \|\nabla \mathbf{y} - \mathbf{p}_2 + \mathbf{u}_2\|_2^2 \quad (8)$$

is a soft shrinkage problem and has closed form solution:

$$\mathbf{p}_2 = \text{soft-shrinkage}(\nabla \mathbf{y} + \mathbf{u}_2, \frac{0.5}{\rho_a}) \quad (9)$$

Algo. 3, Line 2:

$$\mathbf{z} = \operatorname{argmin}_{\mathbf{z}} \underbrace{\rho \|\mathbf{c} - \mathbf{a} \circ \mathbf{g}(\mathbf{z})\|_2^2}_{\text{data fitting constraint}} + \underbrace{\tau_1 \rho_x \|\nabla \mathbf{z} - \mathbf{x} - \mathbf{q}_1 + \mathbf{v}_1\|_2^2}_{\text{prior constraint}} \quad (10)$$

is a nonlinear least squares problem due to the nonlinearity of the modulation function $\mathbf{g}(\mathbf{z})$. We solve this problem by the Levenberg-Marquardt method implemented in the lsqnonlin(.) function in Matlab. We provide the analytical Jacobian for acceleration:

$$J(\mathbf{z}) = \begin{bmatrix} J_{\text{data}}(\mathbf{z}) \\ J_{\text{prior}} \end{bmatrix} \quad (11)$$

where the matrix $J_{\text{data}}(\mathbf{z})$ and J_{prior} define the Jacobian of the 1st (data fitting constraint) and 2nd (prior constraint) least squares in Eq. (10) respectively.

Since the 1st least squares are pixel-wise separable (benefit from our splitting method explained in Sec. 3.1 in the main paper), $J_{\text{data}}(\mathbf{z})$ is simply a diagonal matrix composed of:

$$-\mathbf{a}_k \cdot \frac{\partial \mathbf{g}(\mathbf{z}_k)}{\partial \mathbf{z}_k} \cdot \sqrt{\rho} \quad (12)$$

where k is the pixel index. For the ToF cameras based on cosine model modulation (see Eq. (1) in the main paper), the diagonal element in Eq. (12) becomes:

$$-\mathbf{a}_k \cdot i \frac{4\pi f}{c} \cdot e^{i(\frac{4\pi f}{c} \cdot \mathbf{z}_k)} \cdot \sqrt{\rho} \quad (13)$$

For arbitrary modulation waveforms in the future, the diagonal element in Eq. (12) can be estimated from calibration data. J_{prior} is simply the matrix version of the derivative operator ∇ multiplied by $\sqrt{\tau_1 \rho_x}$, which is independent of \mathbf{z} .

Algo. 3, Line 3:

$$\mathbf{x} = \operatorname{argmin}_{\mathbf{x}} \tau_1 \|\nabla \mathbf{z} - \mathbf{x} - \mathbf{q}_1 + \mathbf{v}_1\|_2^2 + \tau_2 \|\nabla \mathbf{x} - \mathbf{q}_2 + \mathbf{v}_2\|_2^2 \quad (14)$$

equals to the solution of the linear equation system:

$$(\tau_1 \mathbf{I} + \tau_2 \nabla^T \nabla) \mathbf{x} = \tau_1 (\nabla \mathbf{z} - \mathbf{q}_1 + \mathbf{v}_1) + \tau_2 \nabla^T (\mathbf{q}_2 - \mathbf{v}_2) \quad (15)$$

and solved by the left division function in Matlab.

Algo. 3, Line 4:

$$\mathbf{q}_1 = \operatorname{argmin}_{\mathbf{q}_1} \|\mathbf{q}_1\|_1 + \rho_x \|\nabla \mathbf{z} - \mathbf{x} - \mathbf{q}_1 + \mathbf{v}_1\|_2^2 \quad (16)$$

is a soft shrinkage problem and has closed form solution:

$$\mathbf{q}_1 = \text{soft-shrinkage}(\nabla \mathbf{z} - \mathbf{x} + \mathbf{v}_1, \frac{0.5}{\rho_x}) \quad (17)$$

Algo. 3, Line 5:

$$\mathbf{q}_2 = \operatorname{argmin}_{\mathbf{q}_2} \|\mathbf{q}_2\|_1 + \rho_x \|\nabla \mathbf{x} - \mathbf{q}_2 + \mathbf{v}_2\|_2^2 \quad (18)$$

is a soft shrinkage problem and has closed form solution:

$$\mathbf{q}_2 = \text{soft-shrinkage}(\nabla \mathbf{x} + \mathbf{v}_2, \frac{0.5}{\rho_x}) \quad (19)$$