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Abstract

Complex geometric structure variations of 3D models
usually pose great challenges in 3D shape matching and re-
trieval. In this paper, we propose a high-level shape feature
learning scheme to extract structure variation-insensitive
feature with a discriminative auto-encoder for shape match-
ing and retrieval. First, multiscale shape distributions
are developed to represent shape as the input of the auto-
encoder. Then, by imposing the Fisher discrimination crite-
rion on the neurons in the hidden layer of the auto-encoder,
a discriminative auto-encoder is proposed to extract the in-
trinsic shape features so that they have small within-class
scatter but big between-class scatter. Finally, the neurons
in hidden layers from multiple discriminative auto-encoders
are concatenated to form a shape descriptor for matching
and retrieval. The proposed method is evaluated on the
representative datasets with large geometry variations, i.e.,
Mcgill, SHREC’10 ShapeGoogle datasets. Experimental
results on the benchmark datasets demonstrate the effec-
tiveness of the proposed method on the applications of 3D
shape matching and retrieval.

1. Introduction
Nowadays there is an explosive growth of the 3D meshed

surface models in a variety of fields, such as engineering,
entertainment and medical imaging [25, 21, 17, 10, 9, 6].
Due to the data-richness of 3D models, shape retrieval for
3D model searching, understanding and analyzing has been
receiving more and more attention. Using a shape as a
query, the shape retrieval algorithm aims to find the similar
shapes to the query. The performance of a shape retrieval al-
gorithm mainly relies on shape descriptor which can effec-
tively capture the distinctive properties of shape, while it is
invariant to different classes of transformations. Moreover,
the shape descriptor should be insensitive to both topolog-
ical and numerical noise such as consistent behavior even
with topological short-circuits and numerical noises. Once
the shape descriptor is formed, the similarity between two
shapes is determined by the similarity between the shape

descriptors and used for retrieval.
The shape descriptor for shape matching and retrieval

has been extensively studied in geometry community [32,
13, 11, 33, 27]. In the past decades, plenty of shape de-
scriptors have been proposed, such as theD2 shape distribu-
tion [11], statistical moments of the model [33, 26], Fourier
descriptor [8], Light Field Descriptor [14], Eigenvalue De-
scriptor (EVD)[15]. Although these shape descriptors can
represent the shape effectively, they are either sensitive to
non-rigid transformation or topological changes. To be in-
variant to the isometric transformation, the local geomet-
ric features are extracted to represent the shape, such as
spin images [2], shape context [3] and mesh HOG [35].
These shape descriptors can describe deformable shapes
well, however, they are sensitive to local geometric noise
and are not able to characterize the global structure of the
shape.

Apart from the earlier shape descriptors, another popular
approaches to shape retrieval are diffusion based methods
[29, 7, 25, 23]. Based on the Laplace-Beltrami operator,
global point signature (GPS) [25] was proposed to represent
shape. Since the eigenfunctions of the Laplace-Beltrami op-
erator are able to robustly characterize the point on meshed
surface, each vertex is represented by a high dimensional
vector of scaled eigenfunctions of the Laplace-Beltrami op-
erator evaluated at the vertex. The high dimensional vector
is called GPS. Another widely used shape signature is heat
kernel signature (HKS) [29], where Sun et al. proposed
to use the diagonal of the heat kernel as a local descriptor
to represent shape. HKS is invariant to isometric deforma-
tions, insensitive to the small perturbations of the surface.
Both GPS and HKS are point based signatures, which char-
acterizes each vertex on the meshed surface using a vector.

In the aforementioned methods, the shape descriptors
are hand-crafted rather than learned from a set of train-
ing shapes. In [23], the authors applied the bag-of-features
(BOF) paradigm to learn the shape descriptor. The dictio-
nary of words is learned by the K-means clustering method
from a set of HKSs of shapes. Then a histogram of pairs of
spatially-close words over the learned dictionary is formed
as the shape descriptor for retrieval. Based on K-means
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clustering, Lavouè et al. [19] combined the standard and
spatial BOF descriptors for shape retrieval. Since K-means
clustering can be viewed as a special case of sparse cod-
ing, Litman et al. [20] employed sparse coding to learn
the dictionary of words instead of K-means clustering. The
histogram of encoded representation coefficients over the
learned dictionary is used to represent shape for retrieval.
Moreover, in order to obtain the discriminative representa-
tion coefficients, a class-specific dictionary is constructed
in a supervised way.

Recently, due to the favorable ability of modeling the
nonlinearity by mapping the high dimensional feature to
the low dimensional discriminative feature in the hidden
layer of the network, the deep auto-encoder [12, 4] has been
widely used in many challenging tasks such as image de-
noising [34], image classification [18] and face recognition
[16]. Inspired by great success of the deep auto-encoder in
computer vision and pattern recognition, in this paper, we
develop a novel auto-encoder based shape descriptor for re-
trieval, which imposes the Fisher discrimination criterion on
the hidden layer to make the hidden layer features discrimi-
native and insensitive to geometric structure variations. It is
expected that the neurons in the hidden layer have small
within-class scatter but big between-class scatter. More-
over, in order to much more effectively represent shape, by
using multiscale shape distributions as the input of the auto-
encoder, we train a stacked discriminative auto-encoder and
concatenate all neurons in the hidden layers as the high-
level learning shape descriptor for retrieval. The proposed
shape descriptor is verified on the representative and bench-
mark shape datasets, showing very promising performance.

The rest of the paper is organized as follows. Sec-
tion 2 briefly introduces HKS and auto-encoder. Section
3 presents the proposed shape descriptor with the discrim-
inative auto-encoder. Section 4 performs extensive experi-
ments and Section 5 concludes the paper.

2. Background

2.1. Heat Kernel Signature

The 3D model is represented as a graph G = (V,E,W ),
where V is the set of vertices, E is the set of edges and W
is the weigh value for each edge. Given a graph constructed
by connecting pairs of data points with weighted edges, the
heat kernel Ht(x, y) measures the heat flow across a graph,
which is defined to the amount of the heat passing from the
vertex x to the vertex y within a certain amount of time. The
heat flow across the surface is governed by the heat equation
u(x, t), where x denotes one vertex on the meshed surface
and t denotes the diffusion time. Provided that there is an
initial heat distribution on meshed surface at t = 0, the heat
kernel provides the fundamental solution of the heat equa-
tion, which is associated with the Laplace-Beltrami operator

L by:

∂Ht

∂t
= −LHt (1)

where Ht denotes the heat kernel and t is the diffusion
time. The solution of Eq. (1) can be obtained by the eigen-
function expansion by the Laplace-Beltrami operator de-
scribed below.

Ht = exp(−tL) (2)

By the spectral theorem, the heat kernel can be further
expressed as follows:

Ht(x, y) =
∑
i

e−λitφi(x)φi(y) (3)

where λi is the ith eigenvalue of the Laplacian, φi is the
ith eigenfunction, and x and y denotes the vertex x and y,
respectively. Heat kernel signature (HKS)[29] of the vertex
x at time t, Stx, is defined as the diagonal of the heat kernel
of the vertex x taken at time t:

Stx = Ht(x, x) (4)

=
∑
i=0

e−λitφi(x)φi(x)

HKS, as a point signature, can capture information of the
neighborhood of a point x on the shape at a scale defined
by t. In the following section, without the specific in-
struction, we use t to represent the scale of HKS, where
t = 1, 2, · · · , T .

2.2. Auto-encoder

An auto-encoder neural network [12, 4] usually consists
of two parts, i.e., encoder and decoder. The encoder, de-
noted by F , maps the input x ∈ Rd×1 to the hidden layer
representation, denoted by z ∈ Rr×1, where d is the di-
mension of the input and r is the number of neurons in the
hidden layer. In the auto-encoder neural network, one neu-
ron in the layer l is connected to all the neurons in the layer
l + 1. We denote the weight and bias connecting the layer l
and the layer l + 1 by W l and bl, respectively. The output
of the layer is called the activation function. Usually, the
activation function is non-linear, such as sigmoid function
σ(x) = 1

1+e−x or tanh function σ(x) = ex−e−x

ex+e−x . There-
fore, the output f(al) of the layer l + 1 is :

fl+1(al) = σ(W lal + bl) (5)

where fl+1(al) is the activation function in the layer l + 1
and al is the neurons in the layer l. Thus, the encoder F (x)
of k hidden layers can be represented as follows:

F (x) = fk(fk−1(· · · , f2(x))) (6)
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The decoder, denoted by G, maps the hidden layer rep-
resentation z back to the input x. It is defined:

x = fL(fL−1(· · · , fk+1(z))) (7)

where L is the layer number of the auto-encoder neu-
ral network. Denote by W and b the weights and bi-
ases of all layers in the auto-encoder, respectively, where
W = [W 1,W 2, · · · ,WL−1] and b = [b1, b2, · · · , bL−1].
To optimize the parameters W and b, the standard auto-
encoder minimizes the following cost function:

< Ŵ , b̂ >=argminW ,b
1

2

N∑
i=1

‖xi −G(F (xi))‖22

+
1

2
λ‖W ‖22

(8)

where xi represents the ith one of the N training samples,
parameter λ is the positive scalar. In Eq. (8), the first term is
the reconstruction error and the second term is the regular-
ization term that prevents overfitting. An efficient optimiza-
tion method can be implemented by the restricted Boltzman
machine and back-propagation framework. The reader can
see [12] for more details.

3. Shape descriptor based on discriminative
auto-encoder

We detail the proposed framework of the discrimina-
tive auto-encoder based shape descriptor, which comprises
three components, namely, multiscale shape distribution,
discriminative auto-encoder and 3D shape descriptor. Fig.
1 shows the proposed framework. In the multiscale shape
distribution component, the distributions of heat kernel sig-
natures of shape at different scales are extracted as the
low-level feature to input the discriminative auto-encoder.
Then we train a discriminative auto-encoder to learn a high
level feature in the hidden layer in the discriminative auto-
encoder component. In the 3D shape descriptor component,
we form a descriptor from all hidden layer representations
of multiple discriminative auto-encoders for shape retrieval.

3.1. Multiscale shape distribution

Shape distribution [22] refers to a probability distribution
sampled from a shape function describing the 3D model. In
our work, we use the histogram of HKS to describe shape,
which is an approximation of the probability distribution
sampled from HKSs at all vertices of the shape. In order to
characterize the shape more intrinsically, we form a multi-
scale shape distribution by the histograms of HKSs at dif-
ferent scales. Suppose there are C shape classes, each of
which has J samples. We use yi,j to index the jth sam-
ple of the ith shape. For each shape yi,j , we extract HKS
feature Si,j ∈ RT×N , where Si,j = [S1

i,j ,S
2
i,j , · · · ,STi,j ],

Sti,j denotes HKS of the shape yi,j at the tth scale, t =
1, 2, · · · , T , N is the number of vertices of shape yi,j and
T is the number of scales. For the scale t, we calculate the
distribution of heat kernel signatures of N vertices of the
shape yi,j to form the shape distribution hti,j . The multi-
scale shape distribution can extract global representation of
shape at different resolutions. The multiscale shape distri-
bution, as a low-level feature, serves as the input of the dis-
criminative auto-encoder presented in the next subsection.

In addition, we normalize the shape distribution, which
is centralized by the mean and variance of the shape distri-
butions over all training samples from C classes, namely,

hti,j =
hti,j − ht

vt
(9)

where ht and vt are the mean and variance of all training
shape distributions hti,j .

3.2. Discriminative auto-encoder

In this subsection, we propose a discriminative auto-
encoder to extract discriminative high-level feature for
shape retrieval. In order to boost the discriminative power
of the hidden layer features, we impose a Fisher discrimi-
nation criterion on them. Given the input xti of the shape
class i at the scale t, xti = [hti,1,h

t
i,2, · · · ,hti,J ], we denote

by zt the features of the hidden layer k in the auto-encoder
from all classes. We can write zt as zt = [zt1, z

t
2, · · · , ztC ],

where zti = [zti,1, z
t
i,2, · · · , zti,J ], zti,j is the hidden layer

feature of the jth sample from the class i, i = 1, 2, · · · , C,
j = 1, 2, · · · , J . Based on the Fisher discriminative crite-
rion, the discrimination can be achieved by minimizing the
within-class scatter of zt, denoted by Sw(zt), and maxi-
mizing the between-class scatter of zt, denoted by Sb(zt).
Sw(zt) and Sb(zt) are defined as:

Sw(zt) =

C∑
i=1

∑
zt
i,j∈i

(zti,j −mt
i)(z

t
i,j −mt

i)i)
T

Sb(z
t) =

C∑
i=1

ni(m
t
i −mt)(mt

i −mt)T

(10)

where mt
i and mt are the mean vector of zti and zt, re-

spectively, and ni is the number of samples of class i. Intu-
itively, we can define the discriminative regularization term
L(zt) as tr(Sw(zt))) − tr(Sb(zt))). Thus, by incorporat-
ing the discriminative regularization term into the standard
auto-encoder model, we can form the following objective
function of the discriminative auto-encoder:

J(W t, bt) = argminW t,bt

C∑
i=1

1

2
‖xti −G(F (xti))‖22

+
1

2
λ‖W t‖22 +

1

2
γ(tr(Sw(zt))− tr(Sb(zt))).

(11)
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Multiscale shape 
distribution at Scale 1 

Multiscale shape 
distribution at Scale T 

1st Discriminative Auto-encoder 

Tth  Discriminative Auto-encoder 

  

Input Shape Multi-scale shape distribution 

Deep Discriminative Auto-encoder 

Shape Descriptor 

3D Shape Descriptor 

Figure 1. The framework of the proposed discriminative auto-encoder based shape descriptor.

For the sample hti,j , we define the following functions:

J0(W t, bt,hti,j) =
1

2
‖hti,j −G(F (hti,j))‖22 (12)

L0(zti,j) =
1

2
tr((zti,j −mt

i)(z
t
i,j −mt

i))
T )

− 1

2
tr((mt

i −mt)(mt
i −mt)T )

(13)

To optimize the objective function of the discriminative
auto-encoder, we adopt the back-propagation method of the
error. We denote by W l,t

p,q by the weight associated with the
connection between the unit p in the layer l and the unit q
in the layer l. Also, bl,tp is the bias associated with the con-
nection with the unit p in the layer l. The partial derivatives
of the overall cost function J(W t, bt) can be computed as:

∂J(W t, bt)

∂W l,t
=

C∑
i=1

∑
ht

i,j∈i

∂J0(W t, bt,hti,j)

∂W l,t
+ λW l,t

+ γ

C∑
i=1

∑
zt
i,j∈i

∂L0(zti,j)

∂W l,t

(14)

∂J(W t, bt)

∂bl,t
=

C∑
i=1

∑
ht

i,j∈i

∂J0(W t, bt,hti,j)

∂bl,t

+ γ

C∑
i=1

∑
zt
i,j∈i

∂L0(zti,j)

∂bl,t

(15)

Denote by δl,t the error of the output layer L in the auto-
encoder. For the output layer (the layer L), we have:

δL,t = −(hti,j − aL,t)σ′(uL,t) (16)

where aL,t is the activation of the output layer, uL,t is the
total weighted sum of the activations of the layer L − 1
to the output layer and σ′(uL,t) is the derivative of the
activation function in the output layer. For other layers
l = L− 1, L− 2, · · · , 2, with the back-propagation method
in [12], the error δl,t can be recursively obtained by the fol-
lowing equation:

δl,t = ((W l,t)T δl+1,t)σ′(uL,t) (17)

Therefore, the partial derivatives of the function

J0(W t, bt,hti,j),
∂J0(W

t,bt,ht
i,j)

∂W l,t and
∂J0(W

t,bt,ht
i,j)

∂bl,t

can be computed :

∂J0(W t, bt,hti,j)

∂W l,t
= δl+1,t(al,t)T

∂J0(W t, bt,hti,j)

∂bl,t
= δl+1,t

(18)

Since zt = W k−1ak−1 + bk−1, for l 6= k − 1,
∂L0(z

t
i,j)

∂W l,t = 0 and
∂L0(z

t
i,j)

∂bl,t = 0. For l = k − 1,
∂L0(z

t
i,j)

∂W l,t
p,q

and
∂L0(z

t
i,j)

∂bl,tp
can be computed as follows:

∂L0(zti,j)

∂W k−1,t
p,q

=
∂zti,j,p

∂W k−1,t
p,q

∂L0(zti,j)

∂zti,j,p
= ak−1,tq

∂L0(zti,j)

∂zti,j,p

∂L0(zti,j)

∂bk−1,tp

=
∂L0(zti,j)

∂zti,j,p
(19)

where zti,j,p is the pth component of zti,j . The partial deriva-
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tive of L0(zti,j) with respect to zti,j,p can be obtained:

∂L0(zti,j)

∂zti,j,p
= (1− 1

ni
)(zti,j,p −mt

i,p)

− (
1

ni
− 1∑

ni
)(mt

i,p −mt
p)

(20)

where mt
i,p and mt

p are the pth components ofmt
i andmt,

respectively.
Therefore, based on Eqs. (18), (19) and (20), for l 6=

k − 1,
∂J(W t,bt,ht

i,j)

∂W l,t + γ
∂L0(z

t
i,j)

∂W l,t and
∂J(W t,bt,ht

i,j)

∂bl,t +

γ
∂L0(z

t
i,j)

∂bl,t can be obtained by Eq. (18). For l = k − 1,
∂J(W t,bt,ht

i,j)

∂W l,t + γ
∂L0(z

t
i,j)

∂W l,t and ∂J(W t,bt,xt
i)

∂bl,t + γ
∂L0(z

t
i,j)

∂bl,t

can be computed:

∂J0(W t, bt,hti,j)

∂W l,t
+ γ

∂L0(zti,j)

∂W l,t
= (δl+1,t + γ(1− 1

ni
)

(zti,j −mt
i)− γ(

1

ni
− 1∑

ni
)(mt

i −mt))(al,t)T

(21)
∂J0(W t, bt,hti,j)

∂bl,t
+ γ

∂L0(zti,j)

∂bl,t
= δl+1,t + γ(1− 1

ni
)

(zti,j −mt
i)− γ(

1

ni
− 1∑

ni
)(mt

i −mt)

(22)
Once the partial derivatives of the objective function of

the discriminative auto-encoder with respect to W t and
bt are computed, we can employ the conjugate gradient
method to obtainW t and bt. The algorithm of the proposed
discriminative auto-encoder is summarized in Algorithm 1.

3.3. 3D Shape Descriptor

In this subsection, we use the activations of the hidden
layer of the discriminative auto-encoder to form the shape
descriptor. In order to characterize the intrinsic structure of
the shape more effectively, we train multiple discriminative
auto-encoders by setting multiscale shape distributions to
the inputs of the discriminative auto-encoder. That is, for
each scale t, we can learn W t and bt from a set of training
shape distributions, i.e.,xt1,x

t
2, · · · ,xtC , t = 1, 2, · · · , T .

Thus, T discriminative auto-encoders can be formed by T
groups of shape distributions. Once the multiple discrim-
inative auto-encoders are trained, we can concatenate the
activations of all hidden layers to form a shape descriptor.

Denote the tth encoder of the multiple discriminative
auto-encoders by Gt, which corresponds to the input of the
multicale shape distribution at the scale t The shape descrip-
tor of the jth shape from the class i, i.e., activations in the
hidden layers of the multiple discriminative auto-encoders,
can be represented :

αi,j = [G1(h1
i,j), G

2(h2
i,j), · · · , GT (hTi,j)] (23)

Algorithm 1 Algorithm of discriminative auto-encoder.

Input:training set xti;the layer size of the auto-encoder;λ;
γ.
Output: W l,t and bl,t.
Initialize ∆W l,t and ∆bl,t with the restricted Boltzman
machine for all l.
For all hti,j :

1. Compute
∂J0(W

t,bt,ht
i,j)

∂W l,t + γ
∂L0(z

t
i,j)

∂W l,t and
∂J0(W

t,bt,ht
i,j)

∂bl,t + γ
∂L0(z

t
i,j)

∂bl,t : l 6= k − 1, com-
pute them with Eq. (18); l = k − 1, compute them
with Eqs. (21) and (22).

2. Set ∆W l,t to ∆W l,t +
∂J0(W

t,bt,ht
i,j)

∂W l,t + γ
∂L0(z

t
i,j)

∂W l,t .

3. Set ∆bl,t to ∆bl,t +
∂J0(W

t,bt,xt
i)

∂bl,t + γ
∂L0(z

t
i,j)

∂bl,t .

UpdateW l,t and bl,t: W l,t = W l,t−α(∆W l,t+λW l,t)
bl,t = bl,t − α∆bl,t.
OutputW l,t and bl,t until the values of J(W l,t, bl,t,xti) in
adjacent iterations are close enough or the maximum num-
ber of iterations is reached.

4. Experimental Results
We conducted the experiments for shape matching and

retrieval to evaluate performance of the proposed 3D shape
descriptor. We define a universal time unit τ = 0.01 and
take 101 sampled time values for the computation of the
HKS descriptor. And 128 bins are used to form the HKS
histogram, which results in the 128-dimensional input of
the discriminative auto-encoder. We train an auto-encoder,
which consists of an encoder with layers of size 128-1000-
500-30 and a symmetric decoder. Moreover, in Eq. (11), λ
and γ are set to 0.001, respectively.

4.1. Shape Matching Performance

The shape matching is a key step in 3D model retrieval.
A good shape descriptor should be robust to represent the
3D model with pose changes, topological changes and noise
corruption. The models used in the experiment were chosen
from the McGill dataset [28]. We evaluate performance of
the proposed shape descriptor from the two aspects.

Consistency over deformed shapes In this experiment,
we test the performance of the proposed shape descriptor
on the deformed shape models. We choose the Teddy-bear
and Human models with different poses. The shape descrip-
tors of the deformed shapes are illustrated in Fig. 2. From
the figure one can see that the descriptors of the model with
different pose changes are very similar, which demonstrates
that the proposed shape descriptor has the potential to con-
sistently represent the shapes with pose changes. On the
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other hand, the shape descriptors of different models are
distinctive. This verifies that the hidden layer features in the
proposed discriminative auto-encoder have small within-
class variations but large between-class variations.

Resistance to noise By perturbing the vertices of the
mesh with various levels of the numerical noise, we will
demonstrate that the proposed shape descriptor is robust to
noise. The noise, a 3-dimensional vector, is randomly gen-
erated from a multivariate normal distribution, Noise ∼
N3(µ,NR ∗Σ), where µ = [E[X1], E[X2], · · · , E[Xk]] is
the 3-dimensional mean vector of the coordinates of all ver-
tices, Σ = [Cov[Xi, Xj ]] is the 3 × 3 covariance matrix of
all vertices, i = 1, 2, · · · , k, j = 1, 2, · · · , k, and NR de-
notes the ratio between the variance of noise and variance
of the coordinates of the vertices.

Fig. 3 show the clean Crab and Hand models, and their
noisy models, respectively. In (a) and (c), the green and
red noisy models are generated by noise of NR = 0.01
and NR = 0.04, respectively. Particularly, in the noisy
model with noise of NR = 0.04, geometric structures of
the mesh have been moderately deteriorated. As indicated
in Fig. 3, the variations of the proposed shape descriptors of
the clean and noisy models (plotted with the yellow, green
and red curves, respectively) are small. Since the level of
noise of NR = 0.01 is low, we can see that the difference
between the shape descriptors of the clean model and the
noisy model of NR = 0.01 is very small. Therefore, the
yellow and green curves are basically overlapped. The test
demonstrates that the proposed shape descriptor formed by
the deep discriminative auto-encoder is robust to noise.

4.2. 3D Shape Retrieval Performance

In order to demonstrate effectiveness of our method,
we test the proposed shape descriptor on three benchmark
datasets of 3D models, i.e., McGill [28], SHREC’10 Shape-
Google [5] datasets. Each shape is represented by a com-
pact 1D shape descriptor and L2 norm is used to compute
the distance between the two shape descriptors for retrieval.

4.2.1 McGill Shape Dataset

The McGill 3D shape dataset is a challenging dataset,
which contains 255 objects with significant part articula-
tions. They are from 10 classes: ant, crab, spectacle, hand,
human, octopus, plier, snake, spider and teddy-bear. Each
class contains one 3D shape with a variety of pose changes.
Fig. 4 shows some examples in the McGill shape dataset.

We compare our proposed method to the state-of-the-
art methods: the Hybrid BOW [24], the PCA based VLAT
method [31], the graph-based method [1], the hybrid 2D/3D
approach [19] and covariance descriptor [30]. We denote
our proposed discriminative auto-encoder based shape de-
scriptor by DASD. In our proposed DASD method, 10

shapes per class are randomly chosen as the training sam-
ples to train the discriminative auto-encoder. The proposed
method is evaluated with different performance measures,
namely, Nearest Neighbor (NN), the First Tier (1-Tier), the
Second Tier (2-Tier) and the Discounted Cumulative Gain
(DGC). The retrieval performance of these methods is illus-
trated in Table 1. From this table, compared to the state-of-
the-art methods [], we can see that the proposed method can
achieve the best performance on the 4 performance mea-
sures. There are large nonrigid deformations with the ob-
jects in the McGill shape dataset, which results in large
within-class variations of the shape descriptors. Nonethe-
less, due to the discriminative feature representation in the
hidden layer of the discriminative auto-encoder, as shown
in Fig. 2, DASD is still robust to nonrigid deformations.
Therefore, our proposed DASD can all obtain better perfor-
mance with the four different retrieval criteria.

Table 1. Retrieval results on the McGill dataset.
Methods NN 1-Tier 2-Tier DCG

Covariance method [30] 0.977 0.732 0.818 0.937
Graph-based method [1] 0.976 0.741 0.911 0.933
PCA-based VLAT [31] 0.969 0.658 0.781 0.894

Hybrid BOW [24] 0.957 0.635 0.790 0.886
Hybrid 2D/3D [19] 0.925 0.557 0.698 0.850

DASD 0.988 0.812 0.934 0.955

4.2.2 SHREC’10 ShapeGoogle Dataset

SHREC’10 ShapeGoogle dataset [5] contains 1184 syn-
thetic shapes. In this dataset, there are 715 shapes from
13 classes are generated with the five simulated transforma-
tions, i.e., isometry, topology, isometry+topology, partial-
ity and triangulation, and there are 456 unrelated distractor
shapes. Following the setting in [20], in order to make the
dataset more challenging, all shapes are re-scaled to have
the same size and the samples in the dataset which have the
same attribute are considered to be of the same class. For
example, male and female shapes are considered to be from
the same class. Fig. 5 shows some examples of the Shape-
Google dataset.

We compared the proposed DASD to the bag of fea-
ture (BOF) descriptor based on standard vector quantiza-
tion (VQ) [5], sparse coding with unsupervised dictionary
learning (DL) [20] and sparse coding with supervised DL
[20]. We used the mean average precision criterion to eval-
uate our proposed method. For each query, the retrieval
was performed on the other 54 shapes of the same class and
1105 negative samples. Evaluation results are summarized
in Table 2. From this table, one can see that our proposed
DASD is superior to the BOF descriptors based on stan-
dard VQ [5], sparse coding with unsupervised DL [20] and
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(a) Teddy-bear models: Teddy-bear1,
Teddy-bear2, Teddy-bear3.

(b) Descriptors of the Teddy-bear models

(c) Human models: Human1, Human2, Hu-
man3.

(d) Descriptors of the Human models

Figure 2. Descriptors of the Teddy-bear model and the Human model. In (b), the descriptors of the shapes are plotted by the yellow, green
and red curves, which correspond to Teddy-bear 1, Teddy-bear 2, Teddy-bear 3 while in (d) these curves correspond to Human 1, Human
2 and Human 3, respectively.

sparse coding with supervised DL [20] in the case of differ-
ent transformations. Compared to the dictionary learning
based shape descriptors, since the deep auto-encoder has
the good ability to model nonlinearity, DASD can charac-
terize the low-dimensional manifold embedded in the high-
dimensional shape space better. For example, in the cases
of isometry+topology and partiality, the supervised dictio-
nary learning based shape descriptor can obtain accuracies
of 0.956 and 0.951 while our proposed DASD can achieve
accuracies of 0.982 and 0.973, respectively.

Table 2. Retrieval results on the SHREC’10 ShapeGoogle dataset.
Transformation VQ [5] UDL [20] SDL [20] DASD

Isometry 0.988 0.977 0.994 0.998
Topology 1.000 1.000 1.000 0.996

Isometry+Topology 0.933 0.934 0.956 0.982
Partiality 0.947 0.948 0.951 0.973

Triangulation 0.954 0.950 0.955 0.955

5. Conclusions

In this paper, we propose a deep shape descriptor with
the discriminative auto-encoder for shape matching and re-

trieval, which is insensitive to geometric structure varia-
tions. By imposing the Fisher discrimination criterion on
the feature representation in the hidden layer of the auto-
encoder, we develop a discriminative auto-encoder so that
the feature representation in the hidden layer have small
within-class scatter but large between-class scatter. Then,
with the multiscale HKS histogram, we train multiple dis-
criminative auto-encoders to extract all features in the hid-
den layers to form the deep shape descriptor. The deep
shape descriptor demonstrates its performance in various
tests for matching and retrieving 3D shapes with deforma-
tions and numerical noises.
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(a) Clean and noisy models of the shape
Crab.

(b) Descriptors of the clean and noisy crab models.

(c) Clean and noisy models of the shape Hu-
man.

(d) Descriptors of the clean and noisy human models.

Figure 3. Descriptors of the clean and noisy models of Crab and Hand. In (a) and (c), the green and red shapes are with noise of NR = 0.01
and NR = 0.04, respectively. In (b) and (d), the descriptors of the shapes plotted by the yellow, green and red curves correspond to the
clean model, the noisy model with noise of NR = 0.01 and the noisy model with noise of NR = 0.04, respectively.

     

Figure 4. Example shapes in the McGill dataset. The left three columns show the shapes of Crab while the right three columns show the
shapes of Hand with nonrigid transformations.

Figure 5. Example shapes with different transformations in the SHREC’10 ShapeGoogle dataset. From left to right, the Centaur shapes
with the isometry, isometry+topology, topology, partiality and triangulation transformations are shown, respectively.
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