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1. Proof of Proposition 4.1

Proof. Recall our objective F (S) = M(S) + λI(S) is submodular. In our implementation, We pick λ such that F (S) is

nonegative.

By the submodularity[1], we first have

F (A) + F (B) ≥ F (A ∪ B) + F (A ∩ B), ∀A ⊆ V ,B ⊆ V (1)

Following [2], we apply our Alg. 1 twice to get two local optimal solutions S1 = argmax
local

{F (S1) : S1 ∈ I,S1 ⊆
V1 = V}, S2 = argmax

local
{F (S2) : S2 ∈ I,S2 ⊆ V2 = V\S1}. And return the maximum from these two as our final

solution: S = argmax{F (S1), F (S2). Given the local optimality and by Lemma 2.5 from [2] , we then have

2(1 + ǫ)F (Si) ≥ F (Si ∪ C) + F (Si ∩ C), ∀C ⊆ I, |Si| = |C|, i = 1, 2 (2)

Let O denote the unknown global optimal solution to the original problem max{F (S) : S ∈ I,S ⊆ V}. Let Oi =
O ∩ Vi, i = 1, 2. We note O1 = O ∩ V1 = O ∩ V = O. With (2), we have

2(1 + ǫ)(F (S1) + F (S2)) ≥ F (S1 ∪ O1) + F (S1 ∩ O1) + F (S2 ∪ O2) + F (S2 ∩ O2) (3)

Since F (S) ≥ F (S1), F (S) ≥ F (S2), we have

4(1 + ǫ)F (S) ≥ F (S1 ∪ O1) + F (S1 ∩ O1) + F (S2 ∪ O2) + F (S2 ∩ O2) (4)

Using submodularity, we have

F (S1 ∪ O1) + F (S2 ∪ O2) + F (S1 ∩ O1) ≥ F (S1 ∪ S2 ∪ O1 ∪ O2) + F ((S1 ∪ O1) ∩ (S2 ∪ O2)) + F (S1 ∩ O1)

= F (S1 ∪ S2 ∪ O) + F (O2) + F (S1 ∩ O1)

≥ F (S1 ∪ S2 ∪ O) + F (O2 ∪ (S1 ∩ O1)) + F (O2 ∩ S1 ∩ O1)

= F (S1 ∪ S2 ∪ O) + F (O) + F (∅)

= F (S1 ∪ S2 ∪ O) + F (O)

(5)

Putting (5) back to (4), we get

4(1 + ǫ)F (S) ≥ F (O) + F (S1 ∪ S2 ∪ O) + F (S2 ∩ O2) ≥ F (O) (6)

This concludes our proof.
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