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The supplementary material is organized as fol-
lows. Section 1 presents the details of our proofs.
Section 2 discusses the connection with existing work.
Section 3 presents some additional experimental re-
sults.

1. Proofs

1.1. Proof of Lemma 1

Here, we are prove the variational formulation of
the �0-norm.

Proof. This lemma is very natural. The total num-
ber of zero elements in w can be computed as

n − ‖w‖0 = max
v∈{0,1}

n∑
i=1

vi, s.t. v ∈ Φ (1)

where Φ � {v | vi � |wi| = 0, ∀i ∈ [n]}. Note that
when wi = 0, vi = 1 will be achieved by maximiza-
tion, when wi �= 0, vi = 0 will be enforced by the
constraint. Thus, vi = 1 − sign(|wi|). Since the
objective function in Eq (1) is linear, maximization
is always achieved at the boundaries of the feasible
solution space. Thus, the constraint of vi ∈ {0, 1}
can be relaxed to 0 ≤ vi ≤ 1, we have:

‖w‖0 = n − max
0≤v≤1

n∑
i=1

vi, s.t. v ∈ Φ

= min
0≤v≤1

〈1, 1 − v〉, s.t. v ∈ Φ

1.2. Proof of Convergence of Algorithm 1

The global convergence of ADMM for convex prob-
lems was given by He and Yuan in [5] under the
variation inequality framework. However, since our

optimization problem is non-convex, the convergence
analysis for ADMM needs additional conditions. In
non-convex optimization, convergence to a station-
ary point (local minimum) is the best convergence
property that we can hope for. By imposing some
conditions, Wen et al. [8] managed to show that
the sequence generated by ADMM converges to a
KKT point. In this section, along a similar line,
we establish the convergence property of proximal
ADMM.

First of all, we present the first-order KKT con-
ditions of our �0TV optimization problem. For sim-
plicity, we define:

Δ � {z | 0 ≤ z ≤ 1}. (2)

Based on the augmented Lagrangian function of
the �0TV optimization problem, we naturally derive
the following KKT conditions of the optimization
problem for {u∗, v∗, x∗, y∗, ξ∗, ζ∗, π∗}:

0 ≤ 〈∇T ξ∗ + KT ζ∗, u − u∗〉, ∀ u ∈ Δ

0 ≤ 〈π∗ � o � |y∗| − 1, v − v∗〉, ∀ v ∈ Δ

0 ∈ ∂λ‖x∗‖p,1 − ξ∗

0 ∈ π∗ � v∗ � o � ∂‖y∗‖1 − ζ∗ (3)

0 = ∇u∗ − x∗

0 = Ku∗ − b − y∗

0 = o � v∗ � |y∗|

whose existence can be guaranteed by Robinson’s
constraint qualification. The following theorem es-
tablishes the convergence properties of the proposed
algorithm, under the assumption that the iterates
generated by Algorithm 1 exhibit no jumping be-
havior. Note that a similar condition was used in
[8].
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Theorem 1. Convergence of Algorithm 1. Let

X � (u, v, x, y) and Y � (ξ, ζ, π). {Xk, Y k}∞
k=1

be the intermediate results of Algorithm 1 after the k-

th iteration. Assume that limk→∞(Y k+1 − Y k) = 0.

Then there exists a subsequence of {Xk, Y k} whose

accumulation point satisfies the KKT conditions.

Proof. (i) {ξ, ζ, π}-subproblem. By the limit of
{ξk, ζk, πk} in the assumption and the update rule
of {ξk+1, ζk+1, πk+1} in Algorithm 1, we obtain

lim
k→∞

∇uk+1 − xk+1 = 0, (4)

lim
k→∞

Kuk+1 − b − yk+1 = 0, (5)

lim
k→∞

o � vk+1 � |yk+1| = 0 (6)

(ii) y-subproblem. By the limit of ζk and πk, and
the update rule of yk+1 in Algorithm 1, we have:

lim
k→∞

{yk+1 ∈ arg min
y

β

2
‖Kuk+1 − b + ζk+1/β − y‖2

+〈|y|, o � vk+1 � πk+1〉 +
β

2
‖o � vk+1 � y‖2}

which is equivalent to:

lim
k→∞

−ζk+1 + πk+1 � vk+1 � o � ∂‖yk+1‖1 = 0 (7)

Moreover, we have the following limit:

lim
k→∞

yk+1 − yk = 0. (8)

(iii) x-subproblem. By the limit of ξk and the update
rule of xk+1, we have:

lim
k→∞

xk+1 ∈ arg min
x∈R2n

λ‖x‖p,1

+
β

2
‖x − (−∇uk+1 − β−1ξk+1)‖2.

which is equivalent to:

lim
k→∞

−ξk+1 + ∂λ‖x‖p,1 = 0 (9)

Clearly, we obtain the following limit:

lim
k→∞

xk+1 − xk = 0. (10)

(iv) v-subproblem. By the limit of yk and πk, we
have:

lim
k→∞

vk+1 ∈ arg min
0≤v≤1

β

2
‖v � o � yk+1‖2

−〈v, 1 − o � πk+1 � |yk+1|〉,

which is equivalent to:

lim
k→∞

〈πk+1 � o � |yk+1| − 1, v − vk+1〉 ≥ 0, ∀v ∈ Δ (11)

(v) u-subproblem. By the optimality of uk+1 for the
u-subproblem, we have:

∀ u ∈ Δ, 0 ≤ 〈∇T ξk + β∇
T (∇uk − xk) + KT ζk +

βKT (Kuk − b − yk) + D(uk+1 − uk), u − uk+1〉

Take the limit of the equality constraints, we have:

lim
k→∞

〈∇T ξk + KT ζk + D(uk+1 − uk), u − uk+1〉 ≥ 0,

∀ u ∈ Δ. (12)

On the other hand, it is easy to validate that the
function L0(u, vk, xk, yk, ξ, ζ, πk) is jointly convex
with respect to {u, ξ, ζ}. We define:

w �

⎛
⎝

u

ξ

ζ

⎞
⎠ and F (w) �

⎛
⎝

∇
T ξ − KT ζ

∇u − xk

Ku − b − yk

⎞
⎠ .

Notice that the mapping F is monotone by convexity.
It follows that

〈wk+1 − w∗, F (wk+1)〉 ≥ 〈wk+1 − w∗, F (w∗)〉 ≥ 0, (13)

From Eq (8), Eq(10) and the first inequality in
Eq(13), we have:

lim
k→∞

〈uk+1 − u∗, ∇
T (ξk+1 − ξ∗) + KT (ζk+1 − ζ∗)〉 +

〈ξk+1 − ξ∗, ∇(uk+1 − u∗)〉 + 〈ζk+1 − ζ∗, K(uk+1 − u∗)〉 ≥ 0

which can be simplified as:

lim
k→∞

2〈uk+1 − u∗, ∇
T (ξk+1 − ξ∗) + KT (ζk+1 − ζ∗)〉 ≥ 0 (14)

By Eq (13), it holds that 〈wk+1 −w∗, F (wk+1)〉 ≥ 0,
then we have:

lim
k→∞

〈uk+1 − u∗, ∇
T ξ∗ − KT ζ∗〉 ≥ 0 (15)

Combining Eq (12), Eq (14) and Eq (15), we have:

lim
k→∞

〈uk+1 − u∗, D(uk − uk+1)〉 ≥ 0 (16)

From the Pythagoras relation1 and the inequality
above, as k → ∞ it follows that

‖uk − u∗‖2
D = ‖uk+1 − u∗‖2

D + ‖uk − uk+1‖2
D +

2〈uk+1 − u∗, D(uk − uk+1)〉

≥ ‖uk+1 − u∗‖2
D + ‖uk − uk+1‖2

D (17)

≥ ‖uk+1 − u∗‖2
D + 0. (18)

1Pythagoras relation: ‖b − a‖2 = ‖c − a‖2 + ‖b − c‖2 +
2〈c − a, b − c〉



Together with the strict positive definiteness of D,
Eq (18) implies that the sequences {‖uk − u∗‖D} is
monotone non-increasing. Moreover, the sequence
{‖uk − u∗‖D} and {uk} are bounded. On the other
hand, from Eq (17), we have:

‖uk − uk+1‖2
D ≤ ‖uk − u∗‖2

D − ‖uk+1 − u∗‖2
D

≤ ‖uk − u∗‖2
D + 0

which implies that the sequences ‖uk − uk+1‖2
D is

also monotone non-increasing.
We denote C = ‖u0 − u∗‖2

D − ‖uk − u∗‖2
D. Sum-

ming Eq (17) over i = 0, 1, ..., k, we have:

C ≥

k∑
i=0

‖uk − uk+1‖2
D

≥ (k + 1)‖uk − uk+1‖2
D

Therefore, we have limk→∞ ‖uk − uk+1‖2
D = C

k+1
=

0. By the strict positive definiteness of D, we have
limk→∞ ‖uk − uk+1‖ = 0.

Notice that Eq (12) holds for each u ∈ Δ. Taking
the limit k → ∞ with u ∈ Δ to this inequality, we
obtain that

∀ u ∈ Δ, 〈∇T ξk + KT ζk, u − uk+1〉

≥ 〈D(uk+1 − uk), uk+1 − u〉

≥ −‖D(uk+1 − uk)‖‖uk+1 − u‖

= 0 (19)

where the last inequality holds by the Cauchy-
Schwarz Inequality. Based on Eqs (4,5,6,7,9,11,19),
we conclude that as k → ∞, there exists a subse-
quence of {Xk, Y k} whose accumulation point satis-
fies the KKT conditions in Eq (3).

2. Discussions on the connection with
Existing Work

In this section, we discuss the connection be-
tween the proposed method �0TV -PADMM and
prior work.

2.1. Connection with convex optimization
method �1TV

The goal of image restoration in the presence
of impulse noise has been pursued by a number of
authors (see, e.g., [13, 3]) using �1TV , which can be
formulated as follows:

min
0≤u≤1

‖Ku − b‖1 + λ ‖∇u‖p,1, (20)

It is generally believed that �1TV is able to remove
the impulse noise properly. This is because �1-norm
provides the tightest convex relaxation for the �0-
norm over the unit ball in the sense of �∞-norm. It is
shown in [2] that the problem of minimizing ‖Ku −
b‖1 is equivalent to ‖Ku−b‖0 with high probability
under the assumptions that (i) Ku − b is sparse at
the optimal solution u∗ and (ii) K is a random
Gaussian matrix and sufficiently “incoherent” (i.e.,
number of rows in K is greater than its number of
columns). However, these two assumptions required
in [2] do not necessarily hold true for our �0TV
optimization problem. Specifically, when the noise
level of the impulse noise is high, Ku − b may not
be sparse at the optimal solution u∗. Moreover,
the matrix K is a square identity or ill-conditioned
matrix. Generally, �1TV will only lead to a sub-
optimal solution.

2.2. Connection with sparse plus low-rank ma-
trix decomposition

Sparse plus low-rank matrix decomposition [9,
15, 6] is becoming a powerful tool that effectively
corrects large errors in structured data in the last
decade. It aims at decomposing a given corrupted
image B (which is of matrix form) into its sparse
component (S) and low-rank component (L) by solv-
ing

min
B,L

‖S‖0 + λ rank(L), s.t. B = L + S.

Here the sparse component represents the foreground
of an image which can be treated as outliers or
impulse noise, while the low-rank component corre-
sponds to the background, which is highly correlated.
This is equivalent to the following optimization prob-
lem:

min
L

‖B − L‖0 + λ rank(L),

which is also based on �0-norm data fidelity. While
they consider the low-rank prior in their objective
function, we consider the Total Variation (TV) prior
in ours.

2.3. Connection with the Adaptive Outlier Pur-
suit algorithm

Very recently, Yan [12] proposed the following
new model for image restoration in the presence of
impulse noise and mixed Gaussian impulse noise:

min
u,z

‖Ku − b − z‖2
2 + λ ‖∇u‖p,1, s.t. ‖z‖0 ≤ k. (21)



They further reformulate the problem above into

min
u,v

‖v � (Ku − b)‖2
2 + λ ‖∇u‖p,1,

s.t. 0 ≤ v ≤ 1, 〈v, 1〉 ≤ n − k

and then solve this problem using an Adaptive Out-
lier Pursuit(AOP) algorithm. The AOP algorithm is
actually an alternating minimization method, which
separates the minimization problem over u and v
into two steps. By iteratively restoring the images
and updating the set of damaged pixels, it is shown
that AOP algorithm outperforms existing state-of-
the-art methods for impulse noise denoising, by a
large margin.

Despite the merits of the AOP algorithm, we must
point out that it incurs three drawbacks, which are
unappealing in practice. First, the formulation in
Eq (21) is only suitable for mixed Gaussian impulse
noise, i.e. it produces a sub-optimal solution when
the observed image is corrupted by pure impulse
noise. (ii) Secondly, AOP is a multiple-stage algo-
rithm. Since the minimization sub-problem over u
2 needs to be solved exactly in each stage, the al-
gorithm may suffer from slow convergence. (iii) As
a by-product of (i), AOP inevitably introduces an
additional parameter (that specifies the Gaussian
noise level), which is not necessarily readily available
in practical impulse denoising problems.

In contrast, our proposed �0TV method is free
from these problems. Specifically, (i) as have been
analyzed in Section 2, i.e. our �0-norm model is opti-
mal for impulse noise. Thus, our method is expected
to produce higher quality image restorations, as seen
in our results. (ii) Secondly, we have integrated �0-
norm minimization into a unified proximal ADMM
optimization framework, it is thus expected to be
faster than the multiple stage approach of AOP. (iii)
Lastly, while the optimization problem in Eq (21)
contains two parameters, our model only contains
one single parameter.

2.4. Connection with other �0-norm optimization
techniques

Actually, the optimization technique for the �0-
norm regularization problem is the key to han-
dling impulse noise. Existing methods such as �p-
norm approximation, the smoothing method [10, 11],
the Smoothly Clipped Absolute Deviation (SCAD)
penalty method[14], the Minimax Concave Plus

2It actually reduces to the �2T V optimization problem.

(MCP) penalty method [4] and the reweighted �1-
norm minimization [1] are not appealing since they
only give approximate solutions for the �0TV prob-
lem. In addition, the simple projection gradient
descent methods [15] are inapplicable to our model
since they assume the objective function is smooth.

Very recently, Lu et al. propose a Penalty Decom-
position Algorithm (PDA) for solving the �0-norm
optimization algorithm [7]. As has been remarked in
[7], ADMM can also be used for solving �0TV mini-
mization simply by replacing the quadratic penalty
functions in the PDA by augmented Lagrangian func-
tions. Nevertheless, as observed in our preliminary
experiments and theirs, the practical performance
of their ADMM is worse than that of PDA.

Actually, in our experiments, we found PDA is
rather unstable. The penalty function can reach
very large values (≥ 108), and the solution can be
degenerate when the minimization problem of the
augmented Lagrangian function in each iteration is
not exactly solved. This motivates us to design a
new �0-norm optimization algorithm in this paper.
We consider a proximal ADMM algorithm to the
MPEC formulation of �0-norm since it has a primal-
dual interpretation. Extensive experiments have
demonstrated that proximal ADMM for solving the
“lifting” MPEC formulation for �0TV produces better
image restoration qualities.

3. More Experiments

In this section, we present some additional ex-
perimental results to demonstrate the superiority of
our proposed �0TV -PADMM method. Due to page
limitations, we were not able to add these results in
the submission.

We test the deblurring problem in the presence of
impulse noise in our experiments. For �02TV -AOP,
we adapt the author’s image denoising implementa-
tion to the image deblurring setting. Since Median
Filter Methods (MFM) are not convenient to solve
the deblurring problems, we do not test them in
here. To generate artificial noisy and blurred images,
we blur the original images and then add random-
valued noise and salt-and-pepper noise with different
densities. We use the following MATLAB scripts to
generate a blurring kernel of radius R:

[x,y] = meshgrid(-R:R,-R:R)

K = double(x.ˆ2 + y.ˆ2 <= R.ˆ2) (22)

P = K/sum(K(:))
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Figure 1: Asymptotic behavior for optimizing Eq (6) to deblur the corrupted ’cameraman’ image. We plot the value
of the objective function (solid blue line) and the SNR value (dashed red line) against the number of optimization
iterations. At specific iterations (i.e. 1, 10, 20, 40, 80, and 160), we also show the deblurred image. Clearly, the
corrupting noise is being effectively removed throughout the optimization process.

We verify the convergence of �0TV -PADMM by
considering the blurred ‘cameraman’ image subject
to 30% random-valued inpulse noise. As seen in
Figure 1, the asymptotic behavior on image deblur-
ring problems strengthen our conclusions drawn in
Section 5.2 in the submission.

3.1. General Image Deblurring Problems

In this subsection, we demonstrate the perfor-
mance of all methods with their optimal regulariza-
tion parameters on general deblurring problems. We
choose R = 7 in Eq(22) in generating the blur ker-
nel. Table 1 shows the recovery results for random-
valued impulse noise and salt-and-pepper impulse
noise, respectively. We have the following interesting
observations. (i) �02TV -AOP significantly outper-
forms �1TV -SBM, and the performance gap becomes
larger as the noise level increases. This is because
the key assumption in the �1 model is that Ku − b is
sparse at the optimal solution u∗. This does not hold
when the noise level is high. (ii) �0TV -PDA outper-
forms �02TV -AOP for high level (≥ 30%) random-
valued impulse noise. However, for salt-and-pepper
impulse noise, �0TV -PDA gives worse performance
than �02TV -AOP in most cases. This phenomenon
indicates that the Penalty Decomposition Algorithm
is not stable for deblurring problems. (iii) By con-
trast, our �0TV -PADMM consistently outperforms
all methods, especially when the noise level is large.
We attribute this result to the “lifting” technique
that is used in our optimization algorithm.

3.2. Scratched Image Denoising Problems

In this subsection, we demonstrate the superi-
ority of the proposed �0TV -PADMM in real-world
image restoration problems. Specifically, we corrupt
the images with scratches which can be viewed as
impulse noise3, see Figure 2. We only consider re-
covering images using �02TV -AOP, �0TV -PDA and
�0TV -PADMM. We show the recovered results in
Figure 3. For better visualization of the images
recovered by all methods, we also show auxiliary
images c in Figure 4, which show the complement of
the absolute residual between the recovered image u

and the corrupted image b (i.e., c = {1 − |b − u|}).
Note that when ci is approximately equal to 1, the
color of the corresponding pixel at position i in the
image is white. A conclusion can be drawn that
our method �0TV -PADMM generates more ‘white’
images c than the other two methods, since it can
identify the ‘right’ outliers in the corrupted image
and make the correction using their neighborhood
information.

3.3. Colored Image Denoising Problems

Our proposed method can be directly extended
to its color version. Since color total variation is
not the main theme of this paper, we only provide a
basic implementation of it. Specifically, we compute
the color total variation channel-by-channel, and
take a �1-norm of the resulting vectors. Suppose

3Note that this is different from the classical image in-
painting problem that assumes the mask is known. In our
scratched image denoising problem, we assume the mask is
unknown.



we have RGB channels, then we have the following
optimization problem:

min
0≤u1≤1

0≤u2≤1

0≤u3≤1

3∑
k=1

(
‖ok � (Kuk − bk)‖0 + λ‖∇uk‖p,1

)

where ok and uk are the prior and the solution of
the kth channel. The grayscale proximal ADMM
algorithm in Algorithm 1 can be directly extended
to solve the optimization above. We demonstrate its
applicability in colored image denoising problems in
Figure 5. The regularization parameter λ is set to 8
for the three images in our experiments.
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Table 1: General Deblurring Problems. The results separated by ‘/’ are SNR0, SNR1 and SNR2, respectively.

Img.
Alg.

Corrupted �1T V -SBM T SM �02T V -AOP �0T V -P DA �0T V -P ADMM

Random-Valued Impulse Noise

walkbridge+10% 0.63/2.86/3.44 0.72/4.61/8.23 0.72/4.59/8.22 0.81/5.62/10.10 0.75/5.00/8.98 0.92/7.23/13.71

walkbridge+30% 0.52/1.07/-0.00 0.67/4.09/7.40 0.61/3.66/6.80 0.79/5.42/9.71 0.74/4.84/8.68 0.89/6.74/12.48

walkbridge+50% 0.42/-0.19/-1.87 0.58/3.23/5.84 0.46/2.43/4.67 0.75/4.93/8.42 0.73/4.66/8.34 0.86/6.34/11.66

walkbridge+70% 0.31/-1.18/-3.20 0.46/1.97/3.50 0.33/1.11/2.31 0.65/3.22/4.70 0.69/4.31/7.71 0.80/5.59/10.07

walkbridge+90% 0.21/-1.97/-4.19 0.32/0.63/1.17 0.25/0.15/0.50 0.33/0.44/0.62 0.42/1.60/2.82 0.64/3.37/5.47

pepper+10% 0.81/4.92/4.49 0.91/8.34/13.04 0.93/8.35/13.64 0.96/9.72/15.86 0.94/9.02/14.68 0.99/11.12/19.78

pepper+30% 0.66/2.09/0.30 0.83/6.82/10.58 0.83/5.72/9.99 0.96/9.70/15.90 0.93/8.77/14.13 0.99/10.81/19.27

pepper+50% 0.52/0.40/-1.78 0.71/4.61/6.76 0.58/3.38/5.94 0.95/9.27/14.20 0.92/8.49/13.46 0.98/10.31/17.73

pepper+70% 0.38/-0.82/-3.20 0.52/2.34/3.40 0.36/1.61/2.87 0.82/4.93/5.20 0.90/7.83/12.23 0.97/9.88/16.55

pepper+90% 0.23/-1.77/-4.26 0.26/0.61/0.88 0.25/0.42/0.73 0.38/0.89/0.87 0.53/2.45/3.53 0.86/6.33/7.75

mandrill+10% 0.59/1.58/1.27 0.67/3.02/4.86 0.65/2.71/4.31 0.68/2.97/4.56 0.68/3.08/4.96 0.80/4.56/7.93

mandrill+30% 0.49/0.03/-1.71 0.66/2.83/4.56 0.60/2.30/3.84 0.69/3.05/4.68 0.67/2.99/4.80 0.77/4.23/7.25

mandrill+50% 0.40/-1.10/-3.43 0.61/2.43/4.01 0.50/1.65/2.94 0.68/2.92/4.43 0.67/2.90/4.65 0.75/3.91/6.56

mandrill+70% 0.30/-1.99/-4.66 0.48/1.54/2.69 0.41/0.90/1.75 0.65/2.54/3.63 0.65/2.75/4.37 0.72/3.52/5.75

mandrill+90% 0.21/-2.73/-5.64 0.39/0.50/0.86 0.35/0.25/0.50 0.42/0.59/0.73 0.49/1.45/2.46 0.65/2.64/4.02

lenna+10% 0.80/4.15/3.67 0.91/7.52/11.82 0.91/7.19/11.87 0.95/8.51/14.31 0.93/7.81/12.75 0.99/9.74/17.81

lenna+30% 0.66/1.54/-0.28 0.87/6.66/10.55 0.82/5.21/9.15 0.94/8.28/13.71 0.92/7.60/12.31 0.99/9.48/17.22

lenna+50% 0.51/-0.11/-2.38 0.73/4.66/7.46 0.61/3.12/5.65 0.93/7.94/12.62 0.91/7.38/11.79 0.97/9.12/15.96

lenna+70% 0.37/-1.30/-3.78 0.56/2.46/3.73 0.44/1.53/2.92 0.85/5.07/5.77 0.89/6.91/10.90 0.95/8.55/14.61

lenna+90% 0.23/-2.22/-4.82 0.42/0.76/1.08 0.34/0.45/0.79 0.45/0.94/0.91 0.58/2.51/3.90 0.85/5.59/7.20

lake+10% 0.71/4.74/4.91 0.81/7.21/10.91 0.83/7.23/11.26 0.90/8.66/13.84 0.84/7.68/12.05 0.97/9.97/17.85

lake+30% 0.59/2.57/1.26 0.69/5.79/9.28 0.65/5.20/8.87 0.89/8.46/13.31 0.83/7.46/11.60 0.96/9.63/17.07

lake+50% 0.46/1.08/-0.76 0.42/3.58/6.18 0.35/3.13/5.57 0.86/7.90/11.94 0.82/7.19/11.08 0.92/9.08/15.10

lake+70% 0.34/0.02/-2.07 0.19/1.74/3.12 0.22/1.60/2.93 0.66/4.38/5.45 0.79/6.73/10.20 0.89/8.48/13.61

lake+90% 0.22/-0.85/-3.11 0.11/0.63/1.12 0.15/0.44/0.83 0.21/0.62/0.76 0.31/2.21/3.60 0.73/5.45/7.02

jetplane+10% 0.76/3.29/2.13 0.86/6.27/9.17 0.88/6.12/9.67 0.93/7.96/12.61 0.89/6.81/10.48 0.98/9.15/16.43

jetplane+30% 0.63/0.70/-1.80 0.82/5.44/7.55 0.69/3.29/6.48 0.93/7.79/12.07 0.88/6.59/9.99 0.98/8.77/15.86

jetplane+50% 0.49/-0.95/-3.90 0.77/4.32/6.24 0.34/0.89/2.59 0.91/7.01/8.95 0.87/6.32/9.47 0.95/8.35/13.97

jetplane+70% 0.36/-2.13/-5.27 0.33/1.01/2.54 0.21/-0.75/-0.37 0.63/1.34/1.75 0.84/5.78/8.51 0.93/7.67/12.33

jetplane+90% 0.22/-3.05/-6.31 0.11/-0.80/-0.49 0.15/-1.89/-2.53 0.21/-1.73/-2.56 0.30/-0.03/0.52 0.80/4.55/5.26

blonde+10% 0.80/3.49/2.75 0.87/5.57/7.79 0.88/5.71/8.82 0.90/6.17/9.36 0.90/6.34/9.93 0.97/7.43/13.53

blonde+30% 0.66/1.00/-1.17 0.88/5.81/8.44 0.83/4.43/7.44 0.90/6.26/9.48 0.90/6.22/9.64 0.95/7.29/12.57

blonde+50% 0.51/-0.56/-3.18 0.85/5.09/7.09 0.62/2.74/4.94 0.90/6.18/9.13 0.89/6.08/9.34 0.93/6.98/11.46

blonde+70% 0.37/-1.73/-4.59 0.67/3.02/4.50 0.42/1.26/2.53 0.86/4.88/6.01 0.88/5.81/8.80 0.92/6.65/10.62

blonde+90% 0.23/-2.64/-5.63 0.37/0.77/1.32 0.30/0.22/0.65 0.42/0.77/0.91 0.62/2.54/3.93 0.85/5.01/6.30

cameraman+10% 0.78/5.03/4.83 0.84/7.14/10.46 0.89/7.87/12.20 0.94/10.10/15.92 0.90/8.65/13.00 0.99/11.14/19.67

cameraman+30% 0.64/2.39/1.05 0.69/4.54/6.41 0.74/5.26/8.84 0.94/9.99/15.74 0.90/8.41/12.47 0.97/10.83/18.41

cameraman+50% 0.50/0.75/-0.96 0.67/3.49/4.23 0.56/3.07/5.31 0.91/8.46/11.52 0.89/8.12/11.92 0.96/10.45/17.27

cameraman+70% 0.36/-0.45/-2.36 0.60/2.30/2.40 0.37/1.57/2.50 0.72/3.61/3.51 0.86/7.48/10.75 0.94/9.75/15.28

cameraman+90% 0.22/-1.38/-3.40 0.38/1.05/0.98 0.26/0.58/0.70 0.38/0.87/0.75 0.53/2.14/2.71 0.78/4.94/5.20

barbara+10% 0.69/3.62/3.84 0.77/5.65/9.13 0.79/5.66/9.20 0.83/6.47/10.22 0.81/6.05/9.78 0.90/7.61/12.63

barbara+30% 0.57/1.54/0.21 0.73/5.02/8.42 0.67/4.31/7.61 0.83/6.31/9.95 0.80/5.92/9.57 0.88/7.28/11.92

barbara+50% 0.45/0.12/-1.76 0.55/3.40/5.94 0.47/2.69/4.94 0.81/6.07/9.63 0.79/5.77/9.34 0.85/6.79/10.99

barbara+70% 0.34/-0.93/-3.09 0.43/1.89/3.22 0.34/1.31/2.55 0.68/3.54/4.49 0.77/5.45/8.84 0.84/6.45/10.31

barbara+90% 0.22/-1.78/-4.12 0.30/0.55/0.90 0.26/0.33/0.62 0.34/0.61/0.65 0.43/1.91/3.19 0.72/4.39/6.14

boat+10% 0.74/3.88/3.83 0.85/6.54/10.33 0.85/6.33/10.23 0.91/7.79/12.82 0.87/6.79/11.08 0.98/8.92/16.56

boat+30% 0.61/1.55/0.09 0.73/5.19/8.54 0.74/4.50/8.15 0.90/7.60/12.25 0.86/6.61/10.70 0.97/8.53/15.93

boat+50% 0.48/0.00/-1.95 0.67/3.96/6.16 0.51/2.61/5.10 0.87/6.99/10.90 0.84/6.39/10.25 0.93/8.15/14.11

boat+70% 0.35/-1.12/-3.31 0.60/2.55/3.70 0.32/1.17/2.64 0.77/4.25/5.32 0.82/6.00/9.51 0.91/7.57/12.68

boat+90% 0.22/-2.01/-4.35 0.35/0.76/1.31 0.22/0.09/0.67 0.34/0.47/0.75 0.50/2.04/3.41 0.79/5.30/7.51

pirate+10% 0.68/4.06/4.50 0.65/4.87/8.13 0.79/6.25/10.14 0.88/7.79/13.13 0.82/6.75/11.11 0.95/9.18/16.75

pirate+30% 0.56/2.00/0.91 0.65/4.84/7.99 0.61/4.56/7.87 0.87/7.58/12.67 0.81/6.52/10.67 0.93/8.80/15.53

pirate+50% 0.45/0.61/-1.02 0.49/3.13/5.16 0.43/2.78/4.72 0.83/6.64/9.73 0.79/6.28/10.25 0.91/8.42/14.66

pirate+70% 0.33/-0.46/-2.38 0.35/1.53/2.32 0.30/1.33/2.13 0.59/2.90/3.28 0.75/5.73/9.23 0.87/7.60/12.77

pirate+90% 0.21/-1.28/-3.37 0.24/0.43/0.41 0.23/0.34/0.28 0.29/0.50/0.23 0.38/1.56/2.13 0.66/3.58/4.64

Salt-and-Pepper Impulse Noise

walkbridge+10% 0.61/2.00/0.88 0.72/4.62/8.25 0.80/5.61/10.08 0.81/5.61/10.09 0.76/5.03/9.03 0.94/7.47/14.36

walkbridge+30% 0.48/-0.54/-3.25 0.69/4.25/7.63 0.79/5.40/9.68 0.79/5.40/9.68 0.75/4.90/8.79 0.92/7.19/13.73

walkbridge+50% 0.35/-2.12/-5.31 0.62/3.63/6.52 0.77/5.18/9.27 0.77/5.15/9.22 0.73/4.75/8.52 0.90/6.84/12.92

walkbridge+70% 0.21/-3.25/-6.67 0.53/2.68/4.70 0.75/4.95/8.81 0.75/4.94/8.78 0.71/4.54/8.12 0.86/6.35/11.77

walkbridge+90% 0.08/-4.17/-7.73 0.39/1.11/1.70 0.73/4.68/8.31 0.73/4.66/8.26 0.60/3.52/6.41 0.79/5.42/9.85

pepper+10% 0.80/3.59/1.32 0.92/8.60/13.53 0.96/9.67/15.85 0.96/9.67/15.85 0.94/9.10/14.82 0.99/11.43/20.30

pepper+30% 0.62/0.15/-3.20 0.87/7.47/11.65 0.96/9.55/15.60 0.96/9.55/15.60 0.94/8.92/14.42 0.99/11.21/19.76

pepper+50% 0.45/-1.74/-5.37 0.77/5.64/8.59 0.95/9.46/15.36 0.95/9.47/15.39 0.93/8.68/13.89 0.99/10.81/19.12

pepper+70% 0.28/-3.05/-6.80 0.63/3.50/5.14 0.95/9.09/14.66 0.95/9.08/14.65 0.91/8.32/13.15 0.98/10.17/18.09

pepper+90% 0.11/-4.04/-7.86 0.27/0.51/0.68 0.94/8.81/14.07 0.94/8.77/13.90 0.81/5.79/9.18 0.96/9.43/15.99

mandrill+10% 0.58/0.68/-1.29 0.67/3.03/4.86 0.67/2.91/4.51 0.67/2.90/4.46 0.68/3.09/4.97 0.86/5.26/9.65

mandrill+30% 0.45/-1.69/-5.17 0.66/2.87/4.60 0.67/2.88/4.46 0.67/2.90/4.43 0.68/3.03/4.86 0.83/4.90/8.89

mandrill+50% 0.32/-3.22/-7.19 0.63/2.62/4.21 0.66/2.85/4.44 0.67/2.85/4.40 0.67/2.95/4.73 0.80/4.46/7.85

mandrill+70% 0.19/-4.34/-8.55 0.55/1.96/3.30 0.66/2.82/4.41 0.66/2.82/4.41 0.66/2.84/4.54 0.75/3.95/6.68

mandrill+90% 0.07/-5.24/-9.59 0.38/0.44/0.74 0.65/2.72/4.26 0.65/2.73/4.26 0.60/2.38/3.93 0.70/3.26/5.28

lenna+10% 0.79/2.85/0.49 0.91/7.60/11.97 0.95/8.53/14.39 0.95/8.51/14.35 0.93/7.89/12.87 0.99/9.92/18.38

lenna+30% 0.61/-0.45/-3.93 0.89/6.95/10.92 0.95/8.34/13.95 0.94/8.31/13.86 0.92/7.72/12.51 0.99/9.74/17.99

lenna+50% 0.44/-2.35/-6.13 0.80/5.43/8.51 0.93/7.92/12.93 0.93/7.93/12.77 0.91/7.54/12.10 0.99/9.51/17.34

lenna+70% 0.26/-3.64/-7.55 0.63/3.30/5.09 0.93/7.86/12.90 0.93/7.84/12.85 0.90/7.25/11.51 0.98/9.08/16.37

lenna+90% 0.09/-4.64/-8.64 0.43/0.71/0.74 0.91/7.02/10.91 0.91/7.20/10.93 0.80/5.23/8.47 0.95/8.33/13.97

lake+10% 0.69/3.86/2.43 0.82/7.25/10.98 0.90/8.65/13.81 0.90/8.66/13.82 0.85/7.74/12.13 0.98/10.32/18.46

lake+30% 0.54/1.04/-1.79 0.74/6.15/9.70 0.88/8.44/13.39 0.88/8.44/13.39 0.84/7.56/11.79 0.97/10.08/17.87

lake+50% 0.39/-0.66/-3.89 0.51/4.19/6.88 0.87/8.20/12.90 0.87/8.19/12.88 0.83/7.37/11.39 0.96/9.71/17.04

lake+70% 0.23/-1.87/-5.29 0.23/1.96/3.35 0.86/7.88/12.15 0.86/7.87/12.13 0.81/7.07/10.79 0.93/9.27/15.86

lake+90% 0.08/-2.82/-6.35 0.09/0.16/0.19 0.84/7.57/11.48 0.84/7.53/11.37 0.64/5.12/8.25 0.88/8.16/13.37

jetplane+10% 0.75/2.30/-0.47 0.87/6.43/9.38 0.93/7.97/12.63 0.93/7.96/12.62 0.89/6.90/10.56 0.99/9.56/17.73

jetplane+30% 0.58/-0.89/-4.88 0.81/5.25/7.15 0.93/7.71/11.99 0.93/7.65/11.82 0.88/6.72/10.21 0.99/9.28/17.15

jetplane+50% 0.42/-2.66/-6.95 0.76/4.19/5.23 0.91/7.44/11.39 0.91/7.40/11.27 0.87/6.50/9.74 0.98/9.20/16.14

jetplane+70% 0.25/-3.95/-8.38 0.71/2.95/2.84 0.90/7.03/10.50 0.90/7.02/10.23 0.86/6.17/9.10 0.96/8.39/14.77

jetplane+90% 0.08/-4.93/-9.45 0.63/1.45/0.81 0.89/6.73/9.85 0.89/6.75/9.95 0.72/3.59/6.16 0.92/7.39/11.79

blonde+10% 0.78/2.15/-0.59 0.89/6.22/9.45 0.89/6.01/9.11 0.89/6.02/9.12 0.90/6.39/9.96 0.98/7.93/14.34

blonde+30% 0.61/-1.05/-4.94 0.88/5.86/8.54 0.89/6.09/9.24 0.90/6.09/9.22 0.90/6.29/9.77 0.97/7.73/13.76

blonde+50% 0.44/-2.87/-7.07 0.87/5.40/7.51 0.89/6.05/9.17 0.90/6.08/9.18 0.89/6.18/9.52 0.96/7.43/13.02

blonde+70% 0.27/-4.17/-8.51 0.76/3.88/5.27 0.89/5.96/8.95 0.89/5.96/8.97 0.88/6.00/9.15 0.94/7.07/12.01

blonde+90% 0.09/-5.15/-9.58 0.45/1.04/1.38 0.88/5.78/8.71 0.88/5.82/8.82 0.83/4.80/7.41 0.91/6.34/10.28

cameraman+10% 0.78/3.95/2.20 0.87/7.81/11.29 0.95/10.15/16.11 0.95/10.14/16.08 0.91/8.74/13.07 0.99/11.33/20.85

cameraman+30% 0.63/0.67/-2.15 0.72/4.77/6.59 0.94/9.97/15.68 0.94/9.98/15.69 0.90/8.56/12.70 0.99/11.09/20.35

cameraman+50% 0.47/-1.16/-4.26 0.68/3.62/4.47 0.93/9.58/14.75 0.93/9.53/14.58 0.89/8.30/12.20 0.98/11.20/19.35

cameraman+70% 0.32/-2.44/-5.66 0.64/2.67/2.56 0.92/9.09/13.60 0.92/9.03/13.41 0.88/8.00/11.52 0.97/10.34/17.90

cameraman+90% 0.17/-3.43/-6.73 0.50/1.24/0.56 0.91/8.79/12.90 0.90/8.59/12.37 0.77/5.67/8.57 0.93/9.33/14.61

barbara+10% 0.67/2.62/1.08 0.80/5.95/9.47 0.83/6.49/10.29 0.83/6.49/10.28 0.81/6.10/9.84 0.94/8.02/14.04

barbara+30% 0.52/-0.15/-3.10 0.76/5.39/8.81 0.83/6.32/10.03 0.82/6.32/10.03 0.81/5.99/9.68 0.92/7.70/13.24

barbara+50% 0.37/-1.86/-5.22 0.63/4.07/6.89 0.82/6.16/9.82 0.82/6.17/9.82 0.80/5.88/9.49 0.89/7.41/12.40

barbara+70% 0.22/-3.06/-6.62 0.46/2.36/4.01 0.81/6.03/9.61 0.81/6.03/9.60 0.78/5.69/9.20 0.87/7.01/11.48

barbara+90% 0.08/-3.99/-7.66 0.29/0.43/0.64 0.80/5.88/9.39 0.80/5.85/9.32 0.65/4.22/7.29 0.83/6.33/10.23

boat+10% 0.73/2.76/0.95 0.85/6.57/10.38 0.91/7.80/12.86 0.91/7.80/12.86 0.87/6.86/11.15 0.98/9.34/17.36

boat+30% 0.57/-0.28/-3.36 0.79/5.65/9.22 0.90/7.60/12.40 0.90/7.55/12.29 0.86/6.71/10.86 0.98/9.10/16.77

boat+50% 0.41/-2.08/-5.50 0.69/4.35/6.85 0.89/7.34/11.84 0.89/7.34/11.83 0.85/6.53/10.46 0.97/8.81/15.98

boat+70% 0.25/-3.33/-6.92 0.64/3.09/4.20 0.87/6.99/11.05 0.87/6.99/11.02 0.84/6.30/10.01 0.95/8.29/14.83

boat+90% 0.09/-4.31/-8.00 0.53/1.44/1.42 0.86/6.63/10.40 0.85/6.54/10.20 0.73/4.60/7.75 0.89/7.23/12.15



(a) Recovered by �02T V -AOP (b) Recovered by �0T V -PDA (c) Recovered by �0T V -PADMM

(d) Recovered by �02T V -AOP (e) Recovered by �0T V -PDA (f) Recovered by �0T V -PADMM

(g) Recovered by �02T V -AOP (h) Recovered by �0T V -PDA (i) Recovered by �0T V -PADMM

Figure 3: Scratched Image Denoising Problems.



(a) Recovered by �02T V -AOP (b) Recovered by �0T V -PDA (c) Recovered by �0T V -PADMM

(d) Recovered by �02T V -AOP (e) Recovered by �0T V -PDA (f) Recovered by �0T V -PADMM

(g) Recovered by �02T V -AOP (h) Recovered by �0T V -PDA (i) Recovered by �0T V -PADMM

Figure 4: Scratched Image Denoising Problems.



(a) clean color ‘pepper’ image. (b) corrupted ‘pepper’ image. SNR0 =
0.75, SNR1 = 3.06, SNR2 = 1.95.

(c) recovered ‘pepper’ image. SNR0 =
0.95, SNR1 = 8.00, SNR2 = 14.01.

(d) clean color ‘lenna’ image. (e) corrupted ‘lenna’ image. SNR0 =
0.75, SNR1 = 3.30, SNR2 = 1.15.

(f) recovered ‘lenna’ image. SNR0 =
0.97, SNR1 = 12.77, SNR2 = 16.44.

(g) clean color ‘jetplane’ image. (h) corrupted ‘jetplane’ image.
SNR0 = 0.74, SNR1 = −0.27,
SNR2 = −2.42.

(i) recovered ‘jetplane’ image. SNR0 =
0.89, SNR1 = 3.21, SNR2 = 7.49.

Figure 5: Colored Image Denoising Problems.


