Pull the Plug? Predicting If Computers or Humans Should Segment Images

Danna Gurari, Suyog Jain, Margrit Betke, Kristen Grauman; Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 382-391

Abstract


Foreground object segmentation is a critical step for many image analysis tasks. While automated methods can produce high-quality results, their failures disappoint users in need of practical solutions. We propose a resource allocation framework for predicting how best to allocate a fixed budget of human annotation effort in order to collect higher quality segmentations for a given batch of images and automated methods. The framework is based on a proposed prediction module that estimates the quality of given algorithm-drawn segmentations. We demonstrate the value of the framework for two novel tasks related to "pulling the plug" on computer and human annotators. Specifically, we implement two systems that automatically decide, for a batch of images, when to replace 1) humans with computers to create coarse segmentations required to initialize segmentation tools and 2) computers with humans to create final, fine-grained segmentations. Experiments demonstrate the advantage of relying on a mix of human and computer efforts over relying on either resource alone for segmenting objects in three diverse datasets representing visible, phase contrast microscopy, and fluorescence microscopy images.

Related Material


[pdf]
[bibtex]
@InProceedings{Gurari_2016_CVPR,
author = {Gurari, Danna and Jain, Suyog and Betke, Margrit and Grauman, Kristen},
title = {Pull the Plug? Predicting If Computers or Humans Should Segment Images},
booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2016}
}