Object Co-Segmentation via Graph Optimized-Flexible Manifold Ranking
Rong Quan, Junwei Han, Dingwen Zhang, Feiping Nie; Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 687-695
Abstract
Aiming at automatically discovering the common objects contained in a set of relevant images and segmenting them as foreground simultaneously, object co-segmentation has become an active research topic in recent years. Although a number of approaches have been proposed to address this problem, many of them are designed with the misleading assumption, unscalable prior, or low flexibility and thus still suffer from certain limitations, which reduces their capability in the real-world scenarios. To alleviate these limitations, we propose a novel two-stage co-segmentation framework, which introduces the weak background prior to establish a globally close- loop graph to represent the common object and union background separately. Then a novel graph optimized-flexible manifold ranking algorithm is proposed to flexibly optimize the graph connection and node labels to co-segment the common objects. Experiments on three image datasets demonstrate that our method outperforms other state-of-the-art methods.
Related Material
[pdf]
[
bibtex]
@InProceedings{Quan_2016_CVPR,
author = {Quan, Rong and Han, Junwei and Zhang, Dingwen and Nie, Feiping},
title = {Object Co-Segmentation via Graph Optimized-Flexible Manifold Ranking},
booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2016}
}