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Abstract

Advanced computer vision and machine learning tech-

niques tried to automatically categorize the emotions

elicited by abstract paintings with limited success. Since

the annotation of the emotional content is highly resource-

consuming, datasets of abstract paintings are either con-

strained in size or partially annotated. Consequently, it is

natural to address the targeted task within a transductive

framework. Intuitively, the use of multi-label classification

techniques is desirable so to synergically exploit the rela-

tions between multiple latent variables, such as emotional

content, technique, author, etc. A very popular approach for

transductive multi-label recognition under linear classifica-

tion settings is matrix completion. In this study we introduce

non-linear matrix completion (NLMC), thus extending clas-

sical linear matrix completion techniques to the non-linear

case. Together with the theory grounding the model, we

propose an efficient optimization solver. As shown by our

extensive experimental validation on two publicly available

datasets, NLMC outperforms state-of-the-art methods when

recognizing emotions from abstract paintings.

1. Introduction

Beyond the automatic recognition of objective proper-

ties of images, in the past few years the computer vision re-

search community successfully invested large efforts in the

systematic characterization of subjective properties from vi-

sual cues. Image aesthetics [27, 45, 26], portrait beauty

assessment [31], meaningful texture selection [7], memo-

rability gaugement [13], emotion recognition [28] and cre-

ativity [30] are examples of such subjective vision-based

recognition tasks. Remarkably, researchers made a tremen-

dous progress in the automatic analysis of artworks target-

ing a diverse range of tasks, such as inferring paintings

styles [23], studying the influences between artists and art

movements [37], distinguishing authentic drawings from

Figure 1. Sample abstract paintings of the MART dataset: which

one does elicite in you a positive or a negative emotion?

imitations [12], automatically generating artworks [34] and

assessing evoked emotions [32, 46]. Figure 1 shows exam-

ples of abstract paintings from the MART dataset eliciting

positive and negative emotions: which one does what?1

The particular case of the automatic analysis of modern

art is exciting and challenging for the research community,

since the artist aims to convey strong and deep emotional

content to the observer. Indeed, artists immersed into the

abstract art movement tend to enhance the non-figurative

component and to express “only internal truths, renounc-

ing in consequence all consideration of external form” [18].

Subsequently, when analysing modern art paintings, it is of

utmost importance to study the relationship between visual

features (e.g. colour, shapes, textures) and evoked emotions.

In other words, it is crucial, and even more intriguing, to de-

sign vision-based learning models able to exploit this link

and to predict the emotion evoked by a particular paint-

ing. It is therefore unsurprising that there exist several at-

tempts to develop computational approaches for analysing

people’s emotional experience in reaction to modern art-

works [25, 44, 46, 33, 32]. Most of these studies rely on ad-

vanced computer vision and machine learning approaches

for emotionally categorising artworks [25, 46, 32] and for

inferring the parts of the paintings responsible for evoking

specific feelings [44]. Other studies investigate how the tex-

1 Theansweris.Filledboxescorrespondtonegativeemotions.
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Figure 2. Overview of the proposed non-linear matrix completion

framework for abstract painting analysis. Multiple and possibly

noisy labels (i.e. emotion and painting technique) are estimated

from the kernel matrix within a transductive setting, where both

the training and testing features (and thus the full kernel matrix)

are available at training time.

tual component (the title and the description of a painting)

influences the observer’s perceptual experience [33].

Importantly, the automatic analysis of modern artworks

is challenging for different reasons. First of all, annotat-

ing artworks with perceptual attributes is extremely time

consuming and requires the development of ad-hoc crowd-

sourcing platforms together with further post-processing to

account for inter-subject and painting variability. Even if

conducted under controlled settings, the outcome of this

process may lead to noisy and/or missing labels. Second,

while the textual component has shown to influence the ob-

server’s perception, the title and the description of paint-

ings are very heterogeneous, pithy and not always available.

Third, the emotional content is strongly related to other

characteristics of the painting, such as the painting tech-

nique, the artist or even the creation year. Consequently,

we believe that the automatic analysis of modern artworks

should be done (i) in a transductive setting so all the visual

features, including those of the unlabeled samples, are used

for learning and (ii) using multi-label methods able to ex-

ploit the relations between different latent variables.

Up to the authors’ knowledge one of the most success-

ful transductive multi-label learning frameworks is matrix

completion (MC) [9]. Previous works have proven MC

to be an effective approach for different computer vision

tasks such as multi-label image classification with noisy

labels [5], image retrieval and tagging [41, 6], manifold

correspondence finding [20] and head/body pose estima-

tion [2, 1]. Until now, matrix completion approaches were

tied to assume a linear classification model. In this paper we

introduce the first method for non-linear classification with

matrix completion and name it non-linear matrix comple-

tion (NLMC). Figure 2 shows an overview of the proposed

NLMC approach: multiple and possible noisy training la-

bels are used together with the full (training and testing)

kernel matrix to estimate the testing labels. Intuitively, we

extend the linear MC to non-linear kernels, where the im-

plicit kernel features may be of infinite dimension, provid-

ing all the necessary theoretical background. We show that

the problem can be cast into a finite-dimension optimiza-

tion problem, for which we only need the kernel matrices

(and not the features themselves). Finally, we report the

method’s performance with an extensive set of experiments

conducted on two publicly available datasets for emotion

recognition from abstract paintings.

Contributions. This paper has several contributions:

• Introducing the very first non-linear learning approach

within the well-known matrix completion philosophy

and its application to the emotion recognition problem

from abstract paintings (we provide all the necessary

theoretical background to support the formalization of

the method).

• Casting the learning problem using the implicit (po-

tentially infinite-dimensional) features into a non-

linear optimization problem for which only the (finite-

dimensional) kernel matrix is required, and not the im-

plicit features.

• Reporting an extensive experimental campaign on the

only two publicly available datasets for emotion recog-

nition from abstract paintings.2 In this regard, we com-

pare the accuracy in two tasks: emotion recognition

and joint painting technique and emotion recognition,

showing the advantage of the proposed approach over

state-of-the-art methods on transductive learning and

on emotion recognition from abstract paintings.

2. Related Work

In this section we discuss previous works related to (i)

visual learning models for emotional analysis of abstract

paintings and (ii) matrix completion.

2.1. Painting Emotion Recognition

Nowadays, there is an increasing research interest on

developing computational models for emotion analysis of

modern art paintings. Previous works investigated the role

of several visual features (e.g. color, shape and texture)

when predicting the emotion conveyed by the artworks to

the observers. Yanulevskaya et al. [43] proposed an emo-

tion categorization approach based on the aggregation of lo-

cal image statistics and Support Vector Machines (SVM).

2We are in private communication with the authors of [3], but the

dataset is still unavailable due to copyright issues.
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Machajdik et al. [25] introduced a unified framework to

classify artworks emotionally combining low-level visual

features and high-level concepts from psychology and art

theory. In [44] a bag-of-visual-words model combined with

SVM was proposed to classify abstract paintings into those

eliciting positive or negative emotions. Moreover, a back-

projection technique was introduced to identify which parts

of the paintings evoke positive or negative emotions. Zhao

et al. [46] proposed an approach for emotional classifica-

tion of images where specific visual features were designed

according to art principles, trying to capture information

about balance, harmony, variety and movement. Amirshani

et al. [3] documented the research effort towards collecting

datasets of paintings with annotations based on human per-

ceptual scores. Sartori et al. [33] introduced a joint learning

framework for abstract painting emotion recognition which

integrates both visual and text information. To our knowl-

edge, no previous works have tackled the problem of emo-

tional categorization of modern art paintings considering a

multi-label transductive classification framework.

2.2. Matrix Completion

As discussed in the introduction, the recognition of emo-

tions elicited by abstract paintings would definitely benefit

from a transductive multi-label learning framework. While

several multi-label classification methods under a super-

vised setting with lots of training data have been devel-

oped, for instance [22, 21], research on transductive multi-

label classification has received much less attention. In-

deed, Kong et al. [19] proposed a method based on label

set propagation for small datasets, Hariharan et al. [10] in-

troduced a max-margin formulation for zero-shot learning

applications, Hueber et al. [11] derived a generative regres-

sor with missing data, and Goldberg et al. [9] studied the

matrix completion framework in depth.

This is the technical scope of the present paper, since

matrix completion is particularly advantageous when data

and labels are noisy or in the case of missing data. Previous

research studies in computer vision exploited matrix com-

pletion for several applications, such as multi-label image

classification [5, 24], image retrieval [41], facial analysis

[40, 35] and joint head and body pose estimation [2]. Other

works focused on developing algorithms to efficiently solve

the MC optimization problem [38, 42]. A recent study [17]

extended matrix completion to incorporate an underlying

graph structure inducing a weighted relationship between

the columns and the rows of the matrix. Importantly, pre-

vious works considered matrix completion only for linear

classification. The proposed non-linear matrix completion

is, up to our knowledge, the first approach for non-linear

multi-label classification in a transductive setting able to

deal with noisy or missing labels/features.

3. Emotion Analysis using NLMC

The main goal of this study is to analyse the emotional

experience of people looking at modern art. Intuitively, the

emotional experience is linked to other characteristics of

the paintings, such as the painting technique or the style.

Therefore, for the sake of completeness, we chose to ad-

dress this problem within a multi-label framework. Further-

more, given that the annotation cost of the perceived emo-

tion is considerably high, a transductive scenario seems to

be the most appropriate. Thus, we extract visual features

from m training paintings X0 = [x1, . . . ,xm] and from

n testing paintings X1 = [xm+1, . . . ,xp=m+n], xi ∈ R
l

∀i ∈ {1, . . . , p}, where l is the dimension of the feature

space. The multi-labels are denoted by yi ∈ R
k, and for the

sake of clarity we assume they are available for the training

set Y0 = [y1, . . . ,ym] while unknown for the testing set

Y1 = [ym+1, . . . ,yp], although (non-linear) matrix com-

pletion can naturally handle partially available labels. In

practice, being in a transductive setting means that visual

features of all (training and testing) samples are used at

training time. In the following, we first describe the features

extracted from the abstract paintings, to later on state the

non-linear matrix completion model and the optimisation

problem, and finally propose an efficient solver that leads to

the optimum labels.

3.1. Visual features for abstract paintings

We use the state-of-the-art color-based visual features re-

cently proposed in [32]. These color-based image features

are inspired from Itten’s understanding of the relevance of

colors and their combinations [14]. The complete descrip-

tion of the features can be found in [32], but we sketch the

three-stage pipeline used to extract them.

Firstly, we use the Color Naming Method (CNM) of [39]

to create a visual vocabulary inspired from 11 linguistic la-

bels, considered to be the ones human beings use to ex-

press colors. This color nomenclature has shown to be more

robust to photometric changes than previous approaches.

CNM allows us to map each of the pixels in a painting to

a new color value taking into account a small neighbor-

hood of the pixel. Once this has been done independently

per each artwork, the new pixel values of all paintings are

jointly clustered in the maximum number of possible col-

ors in Itten’s model (i.e. 180 [14]). After that all pixels

are quantized to the centroids obtained from the clustering

algorithm. In a second stage, the images quantized accord-

ingly to Itten’s color model are segmented using [8]. The

two main parameters of this method are the standard de-

viation of the Gaussian filter and the observation scale. We

used the same values as in [32] for both parameters, without

observing significant performance variations around this

working point. In a third stage, we use two color-based

features, namely: color co-occurrence features and patch-
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based color-combination features. These features are des-

gined to capture different relations between colors: two-

color combinations, the amount of colors, the position of

colors and the distance between colors. A fully detailed de-

scription of the Itten-inspired features can be found in [32].

3.2. Non-Linear Matrix Completion

Recently, the computer vision community developed in-

teresting methods for classification in the framework of ma-

trix completion [9, 5, 2]. In all MC approaches, the joint

label-feature matrix is considered:
�

Y0 Y1

X0 X1

�
∈ R

(k+l)×(m+n). (1)

In previous MC studies the classifier taken under consid-

eration was linear, and the following assumption held:

[Y0 Y1] = W [X0 X1], (2)

with W ∈ R
k×l being the classifier’s parameters. One of

the promiment features of this formulation is that the clas-

sifier’s parameters are not explicitly computed and the un-

known labels are directly estimated. The classifier imposes

a linear dependency between the rows of the matrix. There-

fore, the matrix completion problem is usually cast into a

rank-minimization problem.

Up to the present, nobody considered non-linear classifi-

cation under the MC framework. In this study we present a

formal methodology together with an optimization method

so to combine the classification capabilities of the matrix

completion framework with the representation power of

non-linear kernels applied to the visual features so to ef-

ficiently estimate the evoked emotion of abstract paintings.

To this aim, we assume the data is mapped into a h-

dimensional space through an unknown feature mapping φ.

For this we define φi = φ(xi), and from them Φ0, and Φ1

analogously to X0 and X1. Importantly, (i) the dimension

of the new feature space is possibly infinite (h ≤ ∞), (ii) the

new features are unknown and (iii) only the kernel matrices,

that is K00 = Φ
�

0 Φ0 ∈ R
m×m, K01 = Φ

�

0 Φ1 ∈ R
m×n

and K11 = Φ
�

1 Φ1 ∈ R
n×n, are available. The new label-

feature matrix is defined as:

�Z =

�
Y0 Y1

Φ0 Φ1

�
. (3)

Given the linear relationship between the labels and the new

features [Y0 Y1] = �W [Φ0 Φ1], we seek for a low-rank

approximation of the matrix �Z:

Z∗ = argmin
Z

rank(Z) s.t. PΩ(Z− �Z) = 0, (4)

where PΩ has the effect of a binary mask over the set of all

features and training labels, ensuring that the testing visual

features Φ1 are also used at training time.

While the optimization problem in (4) is well-defined for

finite matrices, defining the rank of a matrix with an infinite

number of rows is not immediate. Lemma 1 in the supple-

mentary material proves that the rank operator is defined for

such matrices (under mild conditions), and subsequently (4)

is well-defined with at least one feasible solution: Z = �Z.

Since minimizing the rank is an NP problem, classical

studies on matrix completion used the nuclear norm, that is

the sum of the singular values. Again Lemma 1 provides

the background to define the singular values (and therefore

the nuclear norm) of a matrix with infinite number of rows.

Very importantly, and this is the main theoretical result of

this study, Theorem 1 proves that the nuclear norm is the

tighest convex envelope of the rank (as with finite matrices)

and that the following problem is equivalent to (4):

Z∗ = argmin
Z

�Z�∗ s.t. PΩ(Z− �Z) = 0. (5)

Furthermore, also inspired by [29], we impose the de-

composition Z = LQ�, where L ∈ R
(k+h)×r and Q ∈

R
p×r, and therefore the optimization problem rewrites:

(L∗,Q∗) = argmin
L,Q

�L�2F + �Q�2F

s.t. PΩ(LQ
� − �Z) = 0. (6)

Importantly, as noted in [29]–Lemma 5.1, the problems (5)

and (6) are equivalent for a sufficiently large value of r.

Finally, we impose an additional constraint in order to

avoid a persistent issue of matrix decomposition techniques

(non-negative matrix factorization is another example): the

scale ambiguity problem. Indeed, if the j-th column of L

and Q is multiplied/divided by the same scalar, the final

approximation does not change. This ambiguity induces

many identical local minima in the objective function, thus

confusing any optimization solver. Typically, one imposes

some kind of normalization on one of the matrices of the

decomposition. Without loss of generality, we chose to im-

pose that Q is orthogonal:3 Q�Q = Ir, where Ir is the

r × r identity matrix. The optimization problem rewrites:

(L∗,Q∗) = argmin
L,Q

�L�2F + �Q�2F

s.t. PΩ(LQ
� − �Z) = 0 and Q�Q = Ir. (7)

3.3. Recognizing evoked emotions

In order to recognize the emotions evoked from the ab-

stract paintings, we need to solve the previous optimization

problem. For clarity purposes, we transfer the label-feature

(resp. the training-testing) structure into L (resp. Q):

L =

�
L0

L1

�
∈ R

k×r

∈ R
h×r , Q =

�
Q0

Q1

�
∈ R

m×r

∈ R
n×r . (8)

3 If Q = UDV is the SVD of Q we define L̃ = LV�D and Q̃ = U,

so that LQ�
= L̃Q̃� and Q̃ is orthogonal.

5243



Once the optimal solution is found, the unknown labels

(emotion and painting technique) are estimated using:

Y∗

1 = L∗

0(Q
∗

1)
�, (9)

where ∗ denotes optimality.

In an ideal scenario, where the visual features and the

label annotations were noiseless and fully trustworthy, the

equality constrain PΩ(LQ
� − �Z) = 0 would be appro-

priate. In the current scenario, where annotations as well

as the extracted visual features may be noisy, relaxing the

original problem by means of a measure of how close are

estimations to the available observations is intuitively more

appropriate. Hence, the objective function rewrites:

F (Q0,Q1,L0,L1) := �Y0 − L0Q
�

0 �
2
F + �Φ0 − L1Q

�

0 �
2
F

+ �Φ1 − L1Q
�

1 �
2
F + λ(�L0�

2
F + �L1�

2
F ), (10)

being λ a regularization parameter (we used �Q�2
F
= r).

As it is often the case in kernel approaches, the features

cannot be explicitly computed. Consequently, the explicit

computation of L1 is also unfeasible. We solve this issue

by taking the derivative of the cost function with respect to

L1 and replace its optimal value into the cost function. Af-

ter this step, the feature matrices are not needed any more,

but only the kernel matrices. Since L1 can potentially have

an infinte number of rows, we cannot reason on the rules

of finite-dimensional calculus. The theoretical foundations

allowing us to take the derivative of a function with respect

to a matrix with an infinite number of rows lie in the field

of functional analysis and are detailed in the supplementary

material. We obtain the following result:

∂F

∂L1
=−2Φ0Q0+2L1Q

�

0 Q0−2Φ1Q1+2L1Q
�

1 Q1+2λL1,

and by canceling this derivative we obtain:

L∗

1 = (Φ0Q0 +Φ1Q1)(λIr +Q�

0 Q0 +Q�

1 Q1)
−1

=
1

λ+ 1
(Φ0Q0 +Φ1Q1), (11)

where we used the normalization of Q. By replacing L1

with its optimal value in the objective function we obtain:

F (Q0,Q1,L0) = −2Tr(Y�

0 L0Q
�

0 ) + Tr(L�

0 L0Q
�

0 Q0)

+ λTr(L�

0 L0)−
1

λ+ 1
Tr(Q�KQ), (12)

where K = [Kij ]ij is the kernel matrix constructed from

the visual features, i.e. Kij = Φ
�

i Φj . We can also take the

(regular) derivative with respect to L0:

∂F

∂L0
= −2Y0Q0 + 2L0Q

�

0 Q0 + 2λL0 (13)

which cancels out when:

L∗

0 = Y0Q0(Q
�

0 Q0 + λIr)
−1. (14)

By plugging back this value into F we obtain:

F (Q0,Q1) = −Tr(Q�

0 Y
�

0 Y0Q0(Q
�

0 Q0 + λIr)
−1)

−
1

λ+ 1
Tr(Q�KQ). (15)

We reduced the original optimisation problem to:

(Q∗

0,Q
∗

1) = arg min
Q0,Q1

F (Q0,Q1)

s.t. Q�

0 Q0 +Q�

1 Q1 = Ir, (16)

that can be solved with an interior-point algorithm [36, 4]

where the estimation of the Hessian is done with finite dif-

ferences and the iteration step is computed using conjugate

gradient. In that case, the precision of such solver increases

drastically if the gradient of the objective function is pro-

vided:

∂F

∂Q1
= −

2

1 + λ
(K01Q0 +K11Q1), (17)

∂F

∂Q0
= 2Q0

�
Qλ

0

�−1
Q�

0 Y
�

0 Y0Q0

�
Qλ

0

�−1

−2Y�

0 Y0Q0

�
Qλ

0

�−1
−

2

1 + λ
(K00Q0 +K01Q1), (18)

where Qλ
0 = Q�

0 Q0 + λIr. Once the optimal solution

(Q∗

0,Q
∗

1) is found, we can compute L∗

0 with (14) and es-

timate the emotions and painting style using (9).

4. Experimental Validation

We validate the proposed non-linear matrix completion

approach on single-label and multi-label classification. The

complete experimental validation consists on five different

tests: (i) the evaluation of the color-based features using

a standard classification method, (ii) the recognition of the

emotional experience of people observing abstract paintings

(as in [32] we aim to recognize if an abstract painting elicits

a positive or a negative feeling), (iii) the parameter sensitiv-

ity analysis of the proposed NLMC method on this task, (iv)

the ability of NLMC to jointly estimate the emotion elicited

and the painting technique (among Acrylic, Oil, Tempera

and Lithography) and (v) the ability of NLMC to do that

from only one example.

4.1. Datasets

In our experiments we used two publicly available4

datasets: MART and devArt. The main difference is the

4http://disi.unitn.it/˜sartori/datasets/
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Figure 3. Sample paintings from the MART dataset (top row) and

from the devArt dataset (bottom row).

artists’ background, since MART contains paintings by pro-

fessional artists and devArt consists on paintings by am-

ateur artists. Each dataset is composed by 500 images.

The annotation of the emotional perception was done us-

ing the relative score method in [32], which provides posi-

tive/negative labels from partial order relations that are an-

swers to the question: “Which painting in the pair looks

more positive to you?”.

The MART dataset [44] is a collection from the elec-

tronic archive of the Museum of Modern and Contemporary

Art of Trento and Rovereto (MART). The abstract paintings

were produced by almost 80 different professional artists

since the beginning of the 20th century until now. Among

the painters, there are famous artists like Kandinsky, Albers

or Veronesi. Importantly, these artists are known, not only

by their exceptional artworks, but also by their theoretical

studies on abstract art in terms of color, shapes or texture.

An extract of paintings from MART is shown in Figure 3

(top). The painting technique was annotated by an expert.

The devArt dataset is a collection of amateur abstract

paintings obtained from the “DeviantArt” online social net-

work5. DeviantArt is one of the largest online art com-

munities with more than 280 million artworks and 30

million registered users. We selected the 500 most fa-

vored artworks that were under the category Traditional

Art/Paintings/Abstract, from 406 different authors. A sam-

ple of the devArt dataset is shown in Figure 3 (bottom).

4.2. Results

The features. Abstract art theorists state that color is the

most important aspect for abstract painting emotion recog-

nition [14]. Our first experiment serves to find out weather

this is also true from a computational point of view. Figure 4

shows the 5-fold cross-validation average emotion recogni-

tion accuracy when a SVM classifier is fed with the color

combination features [32], the LAB visual words [44] and

CNN features [15]. Experimental results shows that the

5www.deviantart.com
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Figure 4. Evaluation of abstract painting emotion recognition for

different features.

Table 1. Average emotion recognition accuracy (in %) of all base-

line methods in both MART and devArt datasets.

Method MART devArt

TSVM [16] 69.2 70.0
LMC [6] 71.8 72.5

Lasso [32] 68.2 70.4
Group Lasso [32] 70.5 72.1

NLMC 72.8 76.1

color combination feature outperforms the two other alter-

native features. CNN seem not to be effective enough to

extract emotion information from the images. Therefore,

we only perform experiments with the color-based features.

Emotion Recognition. We compare the average emo-

tion recognition accuracy of the proposed non-linear ma-

trix completion (NLMC) method to four different base-

lines. On the one hand, to two traditional transductive

learning approaches namely: kernel transductive SVM

(TSVM [16]) and linear matrix completion (LMC e.g. [6]).

On the other hand, to two state-of-the-art methods for

emotion recognition from abstract paintings: Lasso and

Group Lasso, both evaluated in [32]. The decomposi-

tion size of NLMC and LMC was cross-validated on r ∈
{2, 3, 4, 5}, since no increase of performance was observed

for higher values of r. Similarly, for NLMC, LMC and

TSVM, the regularization parameter was cross-validated

on the set {10−5, . . . , 10−1}, and the radial basis func-

tion kernel (variance) parameter was cross-validated on

the set {0.01, 0.0316, 0.1, 0.316, 1.0, 3.16}. The regular-

ization parameters of Lasso and Group Lasso were cross-

validated in the range {0.1, 0.316, 1, 3.16, 10, 31.6, 100}
and {0.0001, 0.001, 0.01, 0.1, 1} respectively (since for

Group Lasso, the regularization parameter represents a

proportion of its estimated maximum value6). Results

in Table 1 are a 12-realization average with a 10-fold

cross-validation strategy. The entire software is available

at https://github.com/xavirema/nlmc.

6See the documentation of the publicly available software used for the

experiments: http://www.yelab.net/software/SLEP/
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Figure 5. Average emotion recognition accuracy with varying

training set size on the MART dataset.

0.01
0.0316

0.1
0.316

1
3.16

1e−05

0.0001

0.001

0.01

0.1

0

20

40

60

80

γ

MART Dataset

λ

A
C
C

0.01
0.0316

0.1
0.316

1
3.16

1e−05

0.0001

0.001

0.01

0.1

0

20

40

60

80

γ

devArt Dataset

λ

A
C
C

Figure 6. Sensitivity study of parameters of the proposed NLMC

method on the MART (left) and devArt (right) datasets.

First of all we observe that the proposed NLMC ap-

proach systematically outperforms all baselines in both

datasets. Very importantly, this behaviour is observed also

another set of experiments aiming to evaluate the perfor-

mance of the methods when reducing the size of the train-

ing set. Since the MART dataset is the most challenging

among the two, Figure 5 shows the average recognition ac-

curacy of the methods for different training set sizes. Sum-

marizing, NLMC outperforms, both the state-of-the-art on

the emotion recognition task and traditional transductive ap-

proaches widely used in the computer vision community.

This suggests that NLMC could be beneficial for other com-

puter vision tasks. Finally, Figure 7 shows some qualitative

results of the NLMC method on both datasets.

Parameter Sensitivity & Complexity Analysis. We

also report (see Figure 6) the parameter sensitivity anal-

ysis of the proposed NLMC method. The optimal work-

ing point of the method is at λ = 0.01, γ = 0.1 for the

MART dataset and at λ = 0.1, γ = 0.316 for the devArt

dataset. We notice from the two graphs that the two work-

ing points are in a fairly flat part of the surface, meaning

that the NLMC method is not very sensitive to variations

of the parameters around the optimal working point. In ad-

Table 2. Computational complexity (in s) of different methods on

the MART dataset (i.e. 400 training/100 testing paintings).

Method Training Testing

TSVM [16] 0.79
LMC [6] 2.82

Lasso [32] 0.03 0.001
Group Lasso [32] 4.21 0.002

NLMC 1.71

Table 3. Average multi-label recognition accuracy on the MART

dataset: emotion and painting technique.

Method Emotion Technique

LSP [19] 67.19 40.63
LMC [6] 68.75 34.69

NLMC 69.38 41.87

dition to evaluate the performance variation of the method

with the parameter values, we also compared its computa-

tional complexity. Table 2 shows elapsed time of the train-

ing and testing phases (joint in transductive approaches) on

the MART dataset with 400 training/100 testing paintings.

Experiments ran on a regular laptop with an Intel-i5 proces-

sor at 2.67 GHz. We remark that, even if NLMC is not the

fastest method, it is much faster than the two closest com-

petitors in terms of performance, namely: Group Lasso and

LMC. Regarding the convergence, we have experimentally

observed that the relative variation of the objective function

goe below 10−5 after 20 iterations of the algorithm.

Joint Emotion and Technique Recognition. One of the

prominent features of MC in general and NLMC in partic-

ular is that the model is naturally able to deal with multi-

ple label at once. Hence, we evaluate the performance of

the proposed method within a multi-label classification set-

ting addressing two tasks simultaneously: the recognition

of the emotion and of the painting technique. Since the

painting technique is not annotated in the devArt dataset,

this experiment is only conducted on the MART dataset.

Moreover, given that TSVM, Lasso and Group Lasso are

not multi-label classification techniques, we here compare

with the state-of-the-art transductive multi-label approach

in [19], called label set propagation (LSP). The neighbor-

hood size parameter of LSP was cross-validated in the range

{5, . . . , 12}. Finally, in order to guarantee a fair compari-

son with [19], we rebalanced the dataset, leading to a dataset

with 8 samples per combination of emotion and technique

label (eight combinations in total). Consequently, the re-

sults we report here are not directly comparable to the ones

in Table 1. Average accuracy results on both tasks are re-

ported in Table 3. Consistently with the findings in Table 1,

the proposed NLMC approach outperforms all baselines.
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Table 4. Average multi-label one-shot recognition accuracy on the

MART dataset: emotion and painting technique.

Method Emotion Technique

LSP [19] 53.13 24.54
LMC [6] 60.27 32.81

NLMC 64.51 33.48

Importantly, up to the authors’ knowledge this is the first

study addressing the task of joint recognition of emotion

and painting technique from abstract paintings, thus setting

the baseline for future research.

One-shot Emotion and Technique Recognition. Nat-

urally, transductive learning approaches can be used in a

one-shot learning setting, meaning that the training set con-

sists on one sample per class. Hence, we explored the use

of NLMC in such application, thus trying to jointly esti-

mate the emotion and the painting technique from only one

annotated sample per label combination (eight samples in

total). Table 4 shows the results of our experiments com-

paring NLMC with LMC and LSP. Even if all methods ex-

perience an expected small drop in performance, it is clear

that NLMC outperforms LMC and LSP both for emotion

and technique recognition, consistently with the previous

experiments (i.e. Tables 1 and 3).

5. Conclusions

In this paper we address the task of recognizing the emo-

tion elicited by abstract paintings. Since annotating the

emotion of a painting is a highly resource-consuming task,

it is desirable to perform the learning in a transductive set-

ting. Intuitively, the emotion has complex interdependen-

cies with other characteristics of the painting, such as the

painting technique. Therefore we propose to address the

task with a new multi-label transductive classifier, named

non-linear matrix completion. This is the first work address-

ing matrix completion, which is inherently transductive and

multi-label, under the assumption of a non-linear classi-

fier. We derive the theoretical foundation required to set the

optimization problem and propose a solver that performs

the learning. In order to validate the approach, we con-

ducted experiments on two publicly available dataset and

addressed two tasks: emotion recognition and joint emo-

tion and painting technique recognition. Results show sys-

tematic improvement over state-of-the-art on transductive

single- and multi-label approaches as well as other super-

vised approaches previously used in emotion recognition of

abstract paintings. Future works will focus on extending the

proposed framework to handle missing features in order to

integrate other sources of information (e.g. text) useful for

emotional abstract painting analysis.

Figure 7. Sample results for abstract painting analysis. Top two

groups come from the MART dataset, while bottom two groups

from the devArt dataset. Left column corresponds to paintings

with positive feelings, while the right column corresponds to neg-

ative feelings. Paintings framed in purple corresponds to misclas-

sifications of the proposed NLMC method.

References

[1] X. Alameda-Pineda, J. Staiano, R. Subramanian, L. Batrinca,

E. Ricci, B. Lepri, O. Lanz, and N. Sebe. SALSA: A novel

dataset for multimodal group behaviour analysis. TPAMI,

2016. 2

[2] X. Alameda-Pineda, Y. Yan, E. Ricci, O. Lanz, and N. Sebe.

Analyzing free-standing conversational groups: A multi-

modal approach. In ACM MM, 2015. 2, 3, 4

[3] S. A. Amirshahi, G. U. Hayn-Leichsenring, J. Denzler, and

C. Redies. Jenaesthetics subjective dataset: Analyzing paint-

ings by subjective scores. In ECCV Workshops, 2014. 2, 3

[4] R. H. Byrd, J. C. Gilbert, and J. Nocedal. A trust region

method based on interior point techniques for nonlinear pro-

gramming. Math. Prog., 89(1):149–185, 2000. 5

[5] R. Cabral, F. De la Torre, J. P. Costeira, and A. Bernardino.

Matrix completion for weakly-supervised multi-label image

classification. TPAMI, 37(1):121–135, 2015. 2, 3, 4

[6] C.-H. Chen, V. M. Patel, and R. Chellappa. Matrix comple-

tion for resolving label ambiguity. In CVPR, 2015. 2, 6, 7,

8

[7] M.Cimpoi, S.Maji, I.Kokkinos, S.Mohamed, and A.Vedaldi.

Describing textures in the wild. In CVPR, 2014. 1

[8] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient graph-

based image segmentation. IJCV, 59(2):167–181, 2004. 3

[9] A. Goldberg, B. Recht, J. Xu, R. Nowak, and X. Zhu. Trans-

duction with matrix completion: Three birds with one stone.

In NIPS, 2010. 2, 3, 4

[10] B. Hariharan, S. Vishwanathan, and M. Varma. Efficient

max-margin multi-label classification with applications to

zero-shot learning. Machine learning, 88(1-2):127–155,

2012. 3

5247



[11] T. Hueber, L. Girin, X. Alameda-Pineda, and G. Bailly.

Speaker-adaptive acoustic-articulatory inversion using cas-

caded gaussian mixture regression. IEEE/ACM TASLP,

23(12):2246–2259, 2015. 3

[12] J. M. Hughes, D. J. Graham, and D. N. Rockmore. Quan-

tification of artistic style through sparse coding analysis in

the drawings of pieter bruegel the elder. Proceedings of the

National Academy of Sciences, 107(4):1279–1283, 2010. 1

[13] P. Isola, J. Xiao, D. Parikh, A. Torralba, and A. Oliva. What

makes a photograph memorable? TPAMI, 36(7):1469–1482,

2014. 1

[14] J. Itten. The art of color: The subjective experience and ob-

jective rationale of color. In Wiley, 1974. 3, 6

[15] Y. Jia. Caffe: An open source convolutional architecture for

fast feature embedding, 2013. 6

[16] T. Joachims. Transductive inference for text classification

using support vector machines. In ICML, 1999. 6, 7

[17] V. Kalofolias, X. Bresson, M. Bronstein, and P. Van-

dergheynst. Matrix completion on graphs. In NIPS, 2014.

3

[18] W. Kandinsky. Concerning the spiritual in art. Dover Books

on Art History Series, 1914. 1

[19] X. Kong, M. Ng, and Z.-H. Zhou. Transductive multi-label

learning via label set propagation. TKDE, 25(3):704–719,

2013. 3, 7, 8

[20] A. Kovnatsky, M. M. Bronstein, X. Bresson, and P. Van-

dergheynst. Functional correspondence by matrix comple-

tion. CVPR, 2015. 2

[21] X. Li and Y. Guo. Active learning with multi-label svm clas-

sification. In IJCAI, 2013. 3

[22] Z. Lin, G. Ding, M. Hu, and J. Wang. Multi-label classi-

fication via feature-aware implicit label space encoding. In

ICML, 2014. 3

[23] G. Liu, Y. Yan, E. Ricci, Y. Yang, Y. Han, S. Winkler, and

N. Sebe. Inferring painting style with multi-task dictionary

learning. In IJCAI, 2015. 1

[24] M. Liu, Y. Luo, D. Tao, C. Xu, and Y. Wen. Low-rank

multi-view learning in matrix completion for multi-label im-

age classification. In AAAI, 2015. 3

[25] J. Machajdik and A. Hanbury. Affective image classification

using features inspired by psychology and art theory. In ACM

MM, 2010. 1, 3

[26] L. Marchesotti, N. Murray, and F. Perronnin. Discover-

ing beautiful attributes for aesthetic image analysis. IJCV,

113(3):246–266, 2015. 1

[27] N. Murray, L. Marchesotti, and F. Perronnin. Ava: A large-

scale database for aesthetic visual analysis. In CVPR, 2012.

1

[28] K.-C. Peng, T. Chen, A. Sadovnik, and A. Gallagher. A

mixed bag of emotions: Model, predict, and transfer emo-

tion distributions. In CVPR, 2015. 1

[29] B. Recht, M. Fazel, and P. A. Parrilo. Guaranteed minimum-

rank solutions of linear matrix equations via nuclear norm

minimization. SIAM review, 52(3):471–501, 2010. 4

[30] M. Redi, N. O’Hare, R. Schifanella, M. Trevisiol, and

A. Jaimes. 6 seconds of sound and vision: Creativity in

micro-videos. In CVPR, 2014. 1

[31] M. Redi, N. Rasiwasia, G. Aggarwal, and A. Jaimes. The

beauty of capturing faces: Rating the quality of digital por-

traits. In FG, 2015. 1

[32] A. Sartori, D. Culibrk, Y. Yan, and N. Sebe. Who’s afraid of

itten: Using the art theory of color combination to analyze

emotions in abstract paintings. In ACM MM, 2015. 1, 3, 4,

5, 6, 7

[33] A. Sartori, Y. Yan, G. Ozbal, A. Salah, A. Salah, and N. Sebe.

Looking at Mondrian’s Victory Boogie-Woogie: What do i

feel? In IJCAI, 2015. 1, 2, 3

[34] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In CVPR, 2015. 1

[35] S. Tulyakov, X. Alameda-Pineda, E. Ricci, L. Yin, J. F.

Cohn, and N. Sebe. Self-adaptive matrix completion for

heart rate estimation from face videos under realistic con-

ditions. In CVPR, 2016. 3

[36] R. A. Waltz, J. L. Morales, J. Nocedal, and D. Orban. An

interior algorithm for nonlinear optimization that combines

line search and trust region steps. Math. Prog., 107(3):391–

408, 2006. 5

[37] Y. Wang and M. Takatsuka. SOM based artistic styles visu-

alization. In ICME, 2013. 1

[38] Y.-X. Wang, C. M. Lee, L.-F. Cheong, and K.-C. Toh.

Practical matrix completion and corruption recovery using

proximal alternating robust subspace minimization. IJCV,

111(3):315–344, 2015. 3

[39] J. v. d. Weijer, C. Schmid, J. Verbeek, and D. Larlus. Affec-

tive analysis of professional and amateur abstract paintings

using statistical analysis and art theory. TIP, 18(7):1512–

1523, 2009. 3

[40] B. Wu, S. Lyu, B.-G. Hu, and Q. Ji. Multi-label learning

with missing labels for image annotation and facial action

unit recognition. Pattern Recognition, 2015. 3

[41] L. Wu, R. Jin, and A. K. Jain. Tag completion for image

retrieval. TPAMI, 35(3):716–727, 2013. 2, 3

[42] M. Xu, R. Jin, and Z.-H. Zhou. Speedup matrix completion

with side information: Application to multi-label learning.

In NIPS, 2013. 3

[43] V. Yanulevskaya, J. V. Gemert, K. Roth, A. Herbold,

N. Sebe, and J. Geusebroek. Emotional valence categoriza-

tion using holistic image features. In ICIP, 2008. 2

[44] V. Yanulevskaya, J. Uijlings, E. Bruni, A. Sartori, E. Zam-

boni, F. Bacci, D. Melcher, and N. Sebe. In the eye of the

beholder: employing statistical analysis and eye tracking for

analyzing abstract paintings. In ACM MM, 2012. 1, 3, 6

[45] L. Zhang, Y. Gao, R. Zimmermann, Q. Tian, and X. Li.

Fusion of multichannel local and global structural cues for

photo aesthetics evaluation. TIP, 23(3):1419–1429, 2014. 1

[46] S. Zhao, Y. Gao, X. Jiang, H. Yao, T. Chua, and X. Sun. Ex-

ploring principles-of-art features for image emotion recogni-

tion. In ACM MM, 2014. 1, 3

5248


