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Figure 1. Given a single 2D image, we predict surface normals that capture detailed object surfaces. We use the image and predicted surface

normals to retrieve a 3D model from a large library of object CAD models.

Abstract

We introduce an approach that leverages surface nor-

mal predictions, along with appearance cues, to retrieve 3D

models for objects depicted in 2D still images from a large

CAD object library. Critical to the success of our approach

is the ability to recover accurate surface normals for objects

in the depicted scene. We introduce a skip-network model

built on the pre-trained Oxford VGG convolutional neural

network (CNN) for surface normal prediction. Our model

achieves state-of-the-art accuracy on the NYUv2 RGB-D

dataset for surface normal prediction, and recovers fine ob-

ject detail compared to previous methods. Furthermore, we

develop a two-stream network over the input image and pre-

dicted surface normals that jointly learns pose and style

for CAD model retrieval. When using the predicted surface

normals, our two-stream network matches prior work using

surface normals computed from RGB-D images on the task

of pose prediction, and achieves state of the art when using

RGB-D input. Finally, our two-stream network allows us to

retrieve CAD models that better match the style and pose of

a depicted object compared with baseline approaches.

1. Introduction

Consider the images depicting objects shown in Figure 1.

When we humans see the objects, we can not only recog-

nize the semantic category they belong to, e.g., “chair”, we

can also predict the underlying 3D structure, such as the oc-

cluded legs and surfaces of the chair. How do we predict

the underlying geometry? How do we even reason about

invisible surfaces? These questions have been the core area

of research in computer vision community from the begin-

ning of the field. One of the most promising theories in

the 1970-80’s was provided by David Marr at MIT [30].

Marr believed in a feed-forward sequential pipeline for ob-

ject recognition. Specifically, he proposed that recognition

involved several intermediate representations and steps. His

hypothesis was that from a 2D image, humans infer the sur-

face layout of visible pixels, a 2.5D representation. This

2.5D representation is then processed to generate a 3D vol-

umetric representation of the object and finally, this volu-

metric representation is used to categorize the object into

the semantic category.

While Marr’s theory was very popular and gained a lot

of attention, it never materialized computationally because

of three reasons: (a) estimating the surface normals for vis-
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ible pixels is a hard problem; (b) approaches to take 2.5D

representations and estimate 3D volumetric representations

are not generally reliable due to lack of 3D training data

which is much harder to get; (c) finally, the success of 2D

feature-based object detection approaches without any in-

termediate 3D representation precluded the need of this se-

quential pipeline. However, in recent years, there has been a

lot of success in estimating 2.5D representation from single

image [9, 46]. Furthermore, there are stores of 3D models

available for use in CAD repositories such as Trimble3D

Warehouse and via capture from 3D sensor devices. These

recent advancements raise an interesting question: is it pos-

sible to develop a computational framework for Marr’s the-

ory? In this paper, we propose to bring back the ideas put

forth by Marr and develop a computational framework for

extracting 2.5D representation followed by 3D volumetric

estimation.

Why sequential? Of course, one could ask why worry

about Marr’s framework? Most of the available data for

training 3D representations is the CAD data (c.f. ShapeNet

or ModelNet [47]). While one could render the 3D mod-

els, there still remains a big domain gap between the CAD

model renders and real 2D images. We believe Marr’s 2.5D

representation helps to bridge this gap. Specifically, we can

train a 2D → 2.5D model using RGB-D data, and whose

output can be aligned to an extracted 2.5D representation of

the CAD models.

Inspired by this reasoning, we used off-the-shelf 2D-to-

2.5D models to build our computational framework [9, 46].

However, these models are optimized for global scene lay-

out and local fine details in objects are surprisingly missing.

To overcome this problem, we propose a new skip-network

architecture for predicting surface normals in an image. Our

skip network architecture is able to retrieve the fine details,

such as the legs of a table or chair, which are missing in cur-

rent ConvNet architectures. In order to build the next stage

in Marr’s pipeline, we train another ConvNet that learns a

similarity metric between rendered CAD models and 2D

images using both appearances and surface normal layout.

A variant of this architecture is also trained to predict the

pose of the object and yields state-of-the-art performance.

Our Contributions: Our contributions include: (a) A skip-

network architecture that achieves state-of-the-art perfor-

mance on surface normal estimation; (b) A CNN archi-

tecture for CAD retrieval combining image and predicted

surface normals. We achieve state-of-the-art accuracy on

pose prediction using RGB-D input, and in fact our RGB-

only model achieves performance comparable to prior work

which used RGB-D images as input.

1.1. Related Work

The problem of 3D scene understanding has rich his-

tory starting from the early works on blocks world [36],

to generalized cylinders [5], to the work of geons [4]. In

recent years, most of the work in 3D scene understanding

can be divided in two categories: (a) Recovering the 2.5D;

(b) Recovering the 3D volumetric objects. The first cate-

gory of approaches focus on recovering the geometric lay-

out of everyday indoor scenes, e.g., living room, kitchen,

bedroom, etc. The goal is to extract a 2.5D representa-

tion and extract surface layout [18] or depth of the pixels

in the scene. Prior work has sought to recover the overall

global shape of the room by fitting a global parametric 3D

box [17, 39] or recovering informative edge maps [29] that

align to the shape of the room, typically based on Manhat-

tan world constraints [8, 21]. However, such techniques do

not recover fine details of object surfaces in the scene. To

recover fine details techniques have sought to output a 2.5D

representation (i.e. surface normal and depth map) by rea-

soning about mid-level scene properties, such as discrimi-

native 3D primitives [10], convex and concave edges [11],

and style elements harvested by unsupervised learning [12].

Recent approaches have sought to directly predict surface

normals and depth via discriminative learning, e.g., with

hand-crafted features [23]. Most similar to our surface nor-

mal prediction approach is recent work that trains a CNN to

directly predict depth [27], jointly predicts surface normals,

depth, and object labels [9], or combines CNN features with

the global room layout via a predicted 3D box [46].

The second category of approaches go beyond a 2.5D

representation and attempt to extract a 3D volumetric rep-

resentation [4, 5, 36]. This in line with traditional ap-

proaches for object recognition based on 3D model align-

ment [32]. Parametric models, such as volumetric mod-

els [24], cuboids [48], joint cuboid and room layout [38],

and support surfaces (in RGB-D) [13] have been proposed.

Rendered views of object CAD models over different (tex-

tured) backgrounds have been used as training images for

CNN-based object detection [34, 35] and viewpoint esti-

mation [45]. Most similar to us are approaches based on

CAD retrieval and alignment. Approaches using captured

RGB-D images from a depth sensor (e.g. Kinect) include

exemplar detection by rendering depth from CAD and slid-

ing in 3D [42], 3D model retrieval via exemplar regions

matched to object proposals (while optimizing over room

layout) [14], and training CNNs to predict pose for CAD

model alignment [15] and to predict object class, location,

and pose over rendered CAD scenes [33]. We address the

harder case of alignment to single RGB images. Recent

work include instance detection of a small set of IKEA

objects via contour-based alignment [26], depth prediction

by aligning to renders of 3D shapes via hand-crafted fea-

tures [44], object class detection via exemplar matching

with mid-level elements [1, 7], and alignment via com-

position from multiple 3D models using hand-crafted fea-

tures [19]. More recently CNN-based approaches have de-
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Figure 2. Skip-network architecture for surface normal prediction. CNN layer responses are concatenated for each pixel, which are passed

through a multi-layer perceptron to predict the surface normal for each pixel.

veloped, such as learning a mapping from CNN features to

a 3D light-field embedding space for view-invariant shape

retrieval [25] and retrieval using AlexNet [22] pool5 fea-

tures [2]. Also relevant is the approach of Bell and Bala [3]

that trains a Siamese network modeling style similarity to

retrieve product images having similar style as a depicted

object in an input photo.

Our work impacts both the categories and bridges the

two. First, our skip-network approach (2D → 2.5D) uses

features from all levels of ConvNet to preserve the fine level

details. It provides state of the art performance on sur-

face layout estimation. Our 2.5D→ 3D approach differs in

its development of a CNN that jointly models appearance

and predicted surface normals for viewpoint prediction and

CAD retrieval.

1.2. Approach Overview

Our system takes as input a single 2D image and out-

puts a set of retrieved object models from a large CAD li-

brary matching the style and pose of the depicted objects.

The system first predicts surface normals capturing the fine

details of objects in the scene (Section 2). The image,

along with the predicted surface normals, are used to re-

trieve models from the CAD library (Section 3). We train

CNNs for both tasks using the NYU Depth v2 [40] and ren-

dered views from ModelNet [47] for the surface normal pre-

diction and CAD retrieval steps, respectively. We evaluate

both steps and compare against the state-of-the-art in Sec-

tion 4.

2. Predicting Detailed Surface Normals

Our goal is, given a single 2D image I , to output a pre-

dicted surface normal map n for the image. This is a chal-

lenging problem due to the large appearance variation of

objects, e.g., due to texture, lighting, and viewpoint.

Recently CNN-based approaches have been proposed for

this task, achieving state of the art [9, 46]. Wang et al [46]

trained a two-stream network that fuses top-down informa-

tion about the global room layout with bottom-up informa-

tion from local image patches. While the model recovered

the majority of the scene layout, it tended to miss fine de-

tails present in the image due to the difficulty of fusing the

two streams. Eigen and Fergus [9] trained a feed-forward

coarse-to-fine multi-scale CNN architecture. The convo-

lutional layers of the first scale (coarse level) were initial-

ized by training on the object classification task over Ima-

geNet [37]. The remaining network parameters for the mid

and fine levels were trained from scratch on the surface nor-

mal prediction task using NYU depth [40]. While their ap-

proach captured both coarse and fine details, the mid and

fine levels of the network were trained on much less data

than the coarse level, resulting in inaccurate predictions for

many objects.

In light of the above, we seek to better leverage the rich

feature representation learned by a CNN trained on large-

scale data tasks, such as object classification over Ima-

geNet. Recently, Hariharan et al. [16] introduced the hyper-

column representation for the tasks of object detection and

segmentation, keypoint localization, and part labeling. Hy-

percolumn feature vectors hp(I) are formed for each pixel

p by concatenating the convolutional responses of a CNN

corresponding to pixel location p, and capture coarse, mid,

and fine-level details. Such a representation belongs to the

family of skip networks, which have been applied to pixel

labeling [16, 28] and edge detection [49] tasks.

We seek to build on the above successes for surface

normal prediction. Formally, we seek to learn a function

np(I; θ) that predicts surface normals for each pixel loca-

tion p independently in image I given model parameters θ.

Given a training set of N image and ground truth surface

normal map pairs {(Ii, n̂i)}
N
i=1, we optimize the following

objective:

min
θ

N
∑

i=1

∑

p

||np(Ii; θ)− n̂i,p||
2. (1)
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We formulate np(I; θ) as a regression network start-

ing from hypercolumn feature hp(I). Let cjp(I) corre-

spond to the outputs of pre-trained CNN layer j at pixel

location p given input image I . The hypercolumn fea-

ture vector is a concatenation of the responses, hp(I) =
(

cj1p (I), . . . , cjαp (I)
)

for layers j1, . . . , jα.

As shown in Figure 2, we train a multi-layer perceptron

starting from hypercolumn feature hp(I) as input. Note that

the weights of the convolutional layers used to form hp(I)
are updated during training. Also, we normalize the outputs

of the last fully-connected layer, which results in minimiz-

ing a cosine loss.

Given input vector x and matrix-vector parameters Ak

and bk, each layer k produces as output:

fk(x) = ReLU(Akx+ bk), (2)

where element-wise operator ReLU(z) = max(0, z). For

our experiments we use three layers in our regression net-

work, setting the output of the last layer as the predicted

surface normal np(I; θ). Note that Hariharan et al. [16]

learnt weights for a single layer over hypercolumn features.

We found that having multiple layers captures nonlinearities

present in the data and further improves results (c.f. Sec-

tion 4). Also, note that a fully-convolutional network [28]

fuses output class predictions from multiple layers via a di-

rected acyclic graph, whereas we learn regression weights

over a concatenation of the layer responses. Our work is

similar to Mostajabi et al. [31] where they save hypercol-

umn features to disk and train a multi-layer perceptron. In

contrast, ours is an end-to-end pipeline that allows fine tun-

ing of all layers in the network.

Implementation details and optimization. Given train-

ing data, we optimized our network via stochastic gradi-

ent descent (SGD) using the publicly-available Caffe source

code [20]. We used a pre-trained VGG-16 network [41]

to initialize the weights of our convolutional layers. The

VGG-16 network has 13 convolutional layers and 3 fully-

connected (fc) layers. We converted the network to a fully-

convolutional one following Long et al. [28]. To avoid con-

fusion with the fc layers of our multi-layer regression net-

work, we denote fc-6 and fc-7 of VGG-16 as conv-6 and

conv-7, respectively. We used a combination of six differ-

ent convolutional layers in our hypercolumn feature (we an-

alyze our choices in Section 4).

We constructed mini-batches by resizing training images

to 224× 224 resolution and randomly sampled pixels from

5 images (1000 pixels were sampled per image). The ran-

dom sampling not only ensures that memory remains in

bound, but also reduces overfitting due to feature correlation

of spatially-neighboring pixels. We employed dropout [43]

in the fully-connected layers of the regression network to

further reduce overfitting. We set the starting learning rate

to ǫ = 0.001, and back propagated through all layers of the
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Figure 3. Networks for predicting pose (left) and style (right). Our

pose network is trained on a set of rendered CAD views and ex-

tracted surface normal pairs. During prediction, an image and its

predicted surface normals are used to predict the object pose. For

the style network, we train on hand-aligned natural image and

CAD rendered view pairs. We initialize the style network with

the network trained for poses. See text for more details.

network. The learning rate was reduced by a factor of 10
at every 50K iterations. For the current results, we stopped

training at 60K iterations. At test time, an image is passed

through the network and the output of the last layer are re-

turned as the predicted surface normals. No further post-

processing (outside of ensuring the normals are unit length)

is performed on the output surface normals.

3. Learning Pose and Style for CAD Retrieval
Given a selected image region depicting an object of in-

terest, along with a corresponding predicted surface normal

map (Section 2), we seek to retrieve a 3D model from a

large object CAD library matching the style and pose of the

depicted object. This is a hard task given the large num-

ber of library models and possible viewpoints of the object.

While prior work has performed retrieval by matching the

image to rendered views of the CAD models [1], we seek

to leverage both the image appearance information and the

predicted surface normals.

We first propose a two-stream network to estimate the

object pose. This two-stream network takes as input both

the image appearance I and predicted surface normals n(I),
illustrated in Figure 3(left). Each stream of the two stream

network is similar in architecture to CaffeNet [22] upto

pool5 layer. We also initialize both the streams using pre-

trained ImageNet network.

Note that for surface normals there is no corresponding

pre-trained CNN. Although the CaffeNet model has been

trained on images, we have found experimentally (c.f. Sec-

tion 4.2) that it can also represent well surface normals. As

the surface normals are not in the same range as natural im-

ages, we found that it is important as a pre-processing step

to transform them to be in the expected range. The surface
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Figure 4. Qualitative results for surface normal estimation. Note the fine details of sofa, chair, table, pillow etc. captured by our approach.

normal values range from [−1, 1]. We map these scores of

surface normals to [0, 255] to bring them in same range as

natural images. A mean pixel subtraction is done before the

image is fed forward to the network. The mean values for

nx, ny , and nz are computed using the 381 images in train

set of NYUD2.

While one could use the pre-trained networks directly

for retrieval, such a representation has not been optimized

for retrieving CAD models with similar pose and style.

We seek to optimize a network to predict pose and style

given training data. For learning pose, we leverage the fact

that the CAD models are registered to a canonical view so

that viewpoint and surface normals are known for rendered

views. We generate a training set of sampled rendered views

and surface normal maps {(Ii, n̂i)}
N
i=1 for viewing angles

{φi}
N
i=1 for all CAD models in the library. We generate

surface normals for each pixel by ray casting to the model

faces, which allows us to compute view-based surface nor-

mals n̂.

To model pose, we discretize the viewing angles φ and

cast the problem as one of classifying into one of the dis-

crete poses. We pass the concatenated CaffeNet “pool5”

features c̄(I, n̂) through a sequence of two fully-connected

layers, followed by a softmax layer to yield pose predictions

g(I, n̂; Θ) for model parameters Θ. We optimize a softmax

loss over model parameters Θ:

min
Θ

−

N
∑

i=1

φT
i log(g(Ii, n̂i; Θ)). (3)

Note that during training, we back propagate the loss

through all the layers of CaffeNet as well. Given a

trained pose predictor, at test time we pass in image I and

predicted surface normals n(I) to yield pose predictions

g(I, n(I); Θ) from the last fully connected layer. We can

also run our network given RGB-D images, where surface

normals are derived from the depth channel. We show pose-

prediction results for both types of inputs in Section 4.2.

Note that a similar network for pose prediction has been

proposed for RGB-D input images [15]. There, they train

a network from scratch using normals from CAD for train-

ing and query using Kinect-based surface normals during

prediction. We differ in our use of the pre-trained CaffeNet

to represent surface normals and our two-stream network

incorporating both surface normal and appearance informa-

tion. We found that due to the differences in appearance

of natural images and rendered views of CAD models, sim-

ply concatenating the pool5 CaffeNet features hurt perfor-

mance. We augmented the data similar to [45] by composit-

ing our rendered views over backgrounds sampled from nat-

ural images during training, which improved performance.

From two-stream pose to siamese style network. While

the output of the last fully-connected layer used for pose

prediction can be used for retrieval, it has not yet been op-

timized for style. Inspired by [3], we seek to model style

given a training set of hand-aligned similar and dissimilar

CAD model-image pairs. Towards this goal, we extend our

two-stream pose network to a Siamese two-stream network

for this task, illustrated in Figure 3(right). Specifically, let f

be the response of the last fully-connected layer of the pose

network above. Given similar image-model pairs (fp, fq)
and dissimilar pairs (fq, fn), we optimize the contrastive

loss:
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L(Θ) =
∑

(q,p)

Lp(fq, fp) +
∑

(q,n)

Ln(fq, fn). (4)

We use the losses Lp(fq, fp) = ||fq − fp||2 and

Ln(fq, fn) = max (m− ||fq − fn||2, 0), where m = 1 is a

parameter specifying the margin. As in [3], we optimize the

above objective via a Siamese network. Note that we op-

timize over pose and style, while [3] optimizes over object

class and style for the task of product image retrieval.

For optimization, we apply mini-batch SGD in train-

ing using the caffe framework. We followed the standard

techniques to train a CaffeNet-like architecture, and back-

propagate through all layers. The procedure for training and

testing are described in the respective experiment section.

4. Experiments

We present an experimental analysis of each component

of our pipeline.

4.1. Surface Normal Estimation

The skip-network architecture described in Section 2 is

used to estimate the surface normals. The VGG-16 net-

work [41] has 13 convolutional layers represented as {11,

12, 21, 22, 31, 32, 33, 41, 42, 43, 51, 52, 53}, and three

fully-connected layers {fc-6, fc-7, fc-8}. As mentioned in

Section 2, we convert the pretrained fc-6 and fc-7 layers

from VGG-16 to convolutional ones, denoted conv-6 and

conv-7, respectively. We use a combination of {12, 22, 33,

43, 53, 7 } convolutional layers from VGG-16. We evaluate

our approach on NYU Depth v2 dataset [40]. There are 795

training images and 654 test images in this dataset. Raw

depth videos are also made available by [40]. We use the

frames extracted from these videos to train our network for

the task of surface normal estimation.

For training and testing we use the surface normals com-

puted from the Kinect depth channel by Ladicky et al. [23]

over the NYU trainval and test sets. As their surface nor-

mals are not available for the video frames in the training

set, we compute normals (from depth data) using the ap-

proach of Wang et al. [46]1.

We ignore pixels where depth data is not available dur-

ing training and testing. As shown in [9, 46] data augmen-

tation during training can boost accuracy. We performed

minimal data augmentation during training. We performed

left-right flipping of the image and color augmentation, sim-

ilar to [46], over the NYU trainval frames only; we did not

perform augmentation over the video frames. This is much

1Wang et al. [46] used a first-order TGV denoising approach to com-

pute normals from depth data which they used to train their model. We did

not use the predicted normals from their approach.

NYUDv2 test Mean Median RMSE 11.25◦ 22.5◦ 30◦

Fouhey et al. [10] 35.3 31.2 41.4 16.4 36.6 48.2

E-F (AlexNet) [9] 23.7 15.5 - 39.2 62.0 71.1

E-F (VGG-16) [9] 20.9 13.2 - 44.4 67.2 75.9

Ours 19.8 12.0 28.2 47.9 70.0 77.8

Manhattan World

Wang et al. [46] 26.9 14.8 - 42.0 61.2 68.2

Fouhey et al. [11] 35.2 17.9 49.6 40.5 54.1 58.9

Fouhey et al. [10] 36.3 19.2 50.4 39.2 52.9 57.8

Ours 23.9 11.9 35.9 48.4 66.0 72.7

Table 1. NYUv2 surface normal prediction: Global scene layout.

less augmentation than prior approaches [9, 46], and we be-

lieve we can get additional boost with further augmentation,

e.g. by employing the suggestions in [6]. Note that the pro-

posed pixel-level optimization also achieves comparable re-

sults training on only the 795 images in the training set of

the NYUD2 dataset. This is due to the variability provided

by pixels in the image as now each pixel act as a data point.

Figure 4 shows qualitative results from our approach.

Notice that the back of the sofa in row 1 is correctly cap-

tured and the fine details of the desk and chair in row 3 are

more visible in our approach. For quantitative evaluation

we use the criteria introduced by Fouhey et al. [10] to com-

pare our approach against prior work [9, 10, 11, 46]. Six

statistics are computed over the angular error between the

predicted normals and depth-based normals – Mean, Me-

dian, RMSE, 11.25◦, 22.5◦, and 30◦ – using the normals

of Ladicky et al. as ground truth [23]. The first three crite-

ria capture the mean, median, and RMSE of angular error,

where lower is better. The last three criteria capture the per-

centage of pixels within a given angular error, where higher

is better.

In this work, our focus is to capture more detailed surface

normal information from the images. We, therefore, not

only evaluate our approach on the entire global scene layout

as in [9, 10, 11, 46], but we also introduce an evaluation over

objects (chair, sofa, and bed) in indoor scene categories.

First we show the performance of our approach on the entire

global scene layout and compare it with [9, 10, 11, 46]. We

then compare the surface normals for indoor scene furniture

categories (chair, sofa, and bed) against [9, 46]. Finally, we

perform an ablative analysis to justify our architecture de-

sign choices.

Global Scene Layout: Table 1 compares our approach

with existing work. We present our results both with and

without Manhattan-world rectification to fairly compare

against previous approaches, as [10, 11, 46] use it and [9] do

not. Similar to [10], we rectify our normals using the van-
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NYUDv2 test Mean Median RMSE 11.25◦ 22.5◦ 30◦

Chair

Wang et al. [46] 44.7 35.8 54.9 14.2 34.3 44.3

E-F (AlexNet) [9] 38.2 32.5 46.3 14.4 34.9 46.6

E-F (VGG-16) [9] 33.4 26.6 41.5 18.3 43.0 55.1

Ours 32.0 24.1 40.6 21.2 47.3 58.5

Sofa

Wang et al. [46] 36.0 27.6 45.4 21.6 42.6 53.1

E-F (AlexNet) [9] 27.0 21.3 34.0 25.5 52.4 63.4

E-F (VGG-16) [9] 21.6 16.8 27.3 32.5 63.7 76.3

Ours 20.9 15.9 27.0 34.8 66.1 77.7

Bed

Wang et al. [46] 28.6 18.5 38.7 34.0 56.4 65.3

E-F (AlexNet) [9] 23.1 16.3 30.8 36.4 62.0 72.6

E-F (VGG-16) [9] 19.9 13.6 27.1 43.0 68.2 78.3

Ours 19.6 13.4 26.9 43.5 69.3 79.3

Table 2. NYUv2 surface normal prediction: Local object layout.

ishing point estimates from Hedau et al. [17]. Interestingly,

our approach performs worse with Manhattan-world rectifi-

cation (unlike Fouhey et al. [10]). Our network architecture

predicts room layout automatically, and appears to be bet-

ter than using vanishing point estimates. Though capturing

scene layout was not our objective, our work out-performs

previous approaches on all evaluation criteria.

Local Object Layout: The existing surface normal liter-

ature is focussed towards the scene layout. In this work,

we stress the importance of fine details in the scene gen-

erally available around objects. We, therefore, evaluated

the performance of our approach in the object regions by

considering only those pixels which belong to a particular

object. Here we show the performance on chair, sofa and

bed. Table 2 shows comparison of our approach with Wang

et al. [46] and Eigen and Fergus [9]. We achieve perfor-

mance around 1-4% better than previous approaches on all

statistics for all the objects.

Ablative Analysis: We analyze how different sets of con-

volutional layers influence the performance of our ap-

proach. Table 3 shows some of our analysis. We chose a

combination of layers from low, mid, and high parts of the

VGG network. Clearly from the experiments, we need a

combination of different low, mid, high layers to capture

rich information present in the image.

4.2. Pose Estimation

We evaluated the approach described in Section 3 to es-

timate the pose of a given object. We trained the pose net-

work using CAD models from Princeton ModelNet [47] as

NYUDv2 test Mean Median RMSE 11.25◦ 22.5◦ 30◦

{11, 12} 44.4 42.7 49.3 4.1 16.5 28.2

{11, 12, 33} 30.2 24.7 37.7 23.1 46.2 58.4

{11, 12, 53} 22.6 15.3 30.5 39.1 63.4 73.1

{11, 12, 33, 53} 21.3 13.9 29.2 42.3 67.0 76.0

{12, 33, 53} 21.3 14.0 29.3 42.0 66.7 75.8

{12, 22, 33, 43, 53} 20.9 13.6 28.0 43.1 67.9 77.0

{12, 22, 33, 43, 53, 7} 19.8 12.0 28.2 47.9 70.0 77.8

Table 3. NYUv2 surface normal prediction: Ablative Analysis.
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Figure 5. Pose prediction on val set. We plot the fraction of in-

stances with predicted pose angular error less than δθ as a function

of δθ . Similar to [15] we consider only those objects which have

valid depth pixels for more than 50%.

training data, and used 1260 models for chair, 526 for sofa,

and 196 for bed. For each model, we rendered 144 dif-

ferent views corresponding to 4 elevation and 36 azimuth

angles. We designed the network to predict one of the 36

azimuth angles, which we treated as a 36-class classifica-

tion problem. Note that we trained separate pose networks

for the chair, sofa, and bed classes. At test time, we forward

propagated the selected region from the image, along with

its predicted surface normals, and selected the angle with

maximum prediction score. We evaluated our approach us-

ing the annotations from Guo and Hoiem [13] where they

manually annotated the NYUD2 dataset with aligned 3D

CAD models for the categories of interest.

Figure 5 shows a quantitative evaluation of our approach

on the NYUD2 val set. Using the criteria introduced in

Gupta et al [15], we plot the fraction of instances with pre-

dicted pose angular error less than δθ as a function of δθ
(higher is better). We compare our approach with Gupta

et al [15] who showed results of pose estimation on the

NYUD2 val set for objects with at least 50% valid depth

pixels. Note that we trained our skip-network for surface

normals using the 381 images of the NYUD2 train set. We

clearly out-perform the baseline using RGB-only and RGB-

D for chairs and sofas. Our approach underperformed for

bed. We believe that the gap in performance is due to sym-

metry in its shape, and proper data augmentation strategies

may improve results. More results showing comparison of

our approach with [33] on NYUD2 test set, and a ablative

study using different input predicted surface normals [9, 46]

are available in supplementary material.
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Figure 6. For each example, the top row shows CAD models re-

trieved using fc-7 of Pose Network and the bottom row shows the

result of nearest-neighbor retrieval using predicted surface nor-

mals.

4.3. Style Estimation

We used the style network described in Section 3 to de-

termine the style of objects. To reduce the search space, we

use this network to re-rank the top-N output of the CAD

models retrieved using the fc-7 feature of the pose network.

We evaluate our style network using chairs as chairs span

a large variety of styles [1]. To train the model we hand-

labeled images in the NYUD2 training set with models hav-

ing very similar style. To assist with the labeling we used

our pose network to retrieve similar CAD models over the

NYU training set. For each example we looked at the top-

30 retrieved CAD models and manually labeled if a partic-

ular CAD model is similar to the input example or not. We

used these labels to train our style network using the con-

trastive loss. Figure 7 shows qualitative examples of our re-

ranking via the style network. Note that the network is able

to boost the ranking of similar examples, e.g., the chairs

having wheels in the first and last row have different styles

in the initial retrieved examples of the pose network. With

the re-ranking, we are able to see chairs with wheels con-

sistently.

We performed a user study similar to Aubry et al. [1]

to evaluate the retrieved models returned by PoseNet and

StyleNet (re-ranking). We asked users to select retrieved

models that have similar style as the query images in the

top-5 retrievals. While the performance for style retrieval

was 45% with PoseNet, StyleNet improved by 2% to 47%.

We believe the re-ranking results are promising, particu-

larly given the limited training data used compared to the

60M training pairs used by Bell & Bala [3] to train a similar

Siamese network. Further, Aubry et al. [1] suggested that

Figure 7. Style re-ranking. For each example the top row shows

the top-5 CAD models obtained using our Style Network and the

bottom row shows the original retrievals using the Pose Network.

finding exact model matches for “chair” and similar cate-

gories may be difficult as the variation is large within the

category. The approximate model matches returned by the

PoseNet retrievals, and improved by StyleNet, appear to be

in line with prior work in this space.

5. Conclusion

We have demonstrated a successful feed-forward ap-

proach for 3D object recognition in 2D images via 2.5D

surface normal prediction. Our skip-network approach for

surface normal prediction recovers fine object detail and

achieves state of the art on the challenging NYU depth

benchmark. We formulated a two-stream pose network that

jointly reasons over the 2D image and predicted surface nor-

mals, and achieves pose prediction accuracy that is com-

parable to existing approaches based on RGB-D images.

When we apply our pose network to RGB-D image data,

we surpass the state of the art for the pose prediction task.

Finally, our pose-style network shows promising results in

retrieving CAD models matching both the depicted object

style and pose. Our accurate surface normal predictions

open up the possibility of having reliable 2.5D predictions

for most natural images, which may have impact on appli-

cations in computer graphics and, ultimately, for the goal of

full 3D scene understanding.
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[15] S. Gupta, P. A. Arbeláez, R. B. Girshick, and J. Malik. Align-

ing 3D models to RGB-D images of cluttered scenes. In

CVPR, 2015. 2, 5, 7
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