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Abstract

Using fiducial markers ensures reliable detection and

identification of planar features in images. Fiducials are

used in a wide range of applications, especially when a re-

liable visual reference is needed, e.g., to track the camera

in cluttered or textureless environments. A marker designed

for such applications must be robust to partial occlusions,

varying distances and angles of view, and fast camera mo-

tions. In this paper, we present a robust, highly accurate

fiducial system, whose markers consist of concentric rings,

along with its theoretical foundations. Relying on projective

properties, it allows to robustly localize the imaged marker

and to accurately detect the position of the image of the

(common) circle center. We demonstrate that our system

can detect and accurately localize these circular fiducials

under very challenging conditions and the experimental re-

sults reveal that it outperforms other recent fiducial systems.

1. Introduction

The term fiducial marker, or simply fiducial, refers to a

set of (coplanar) points encoded in a planar pattern allow-

ing a reliable detection and identification across views. A

fiducial marker system is a (set of) fiducial marker(s) cou-

pled with dedicated computer vision algorithms solving the

detection and identification problems. This is used in a va-

riety of applications, both in computer vision and robotics,

ranging from camera calibration to augmented reality or vi-

sual SLAM. The choice of fiducials is of crucial importance

within this framework as markers must provide reliable vi-

sual references in the scene that can be used to estimate,

e.g., the camera position or its motion. Such framework

requires that the fiducial marker system be robustly and ac-

curately detectable even under very challenging conditions,

such as, e.g., when the markers are partially or largely oc-

cluded, or seen under highly skewed angles or from long
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Figure 1. (a,c) Synthetic images of circular fiducials under very

challenging shooting conditions i.e., perturbed, in particular, by a

(unidirectional) motion blur of magnitude 15px. (b,d) Using the

proposed fiducial system, markers are correctly detected and iden-

tified with an accuracy of 0.54px and 0.36px resp. in (a) and (c) for

the estimated imaged center of the outer ellipse whose semi-major

axis (in green) is equal to 31.9px and 34.5px resp.

distances, when the illumination is very poor or irregular,

or when the camera undergoes very fast motions generating

blur.

In this paper, we present a robust, highly accurate and

theoretically-founded fiducial system, which is highly tol-

erant to all of the mentioned challenges, as shown in Figure

1. Its markers are based on concentric black rings on a white

background, extending the one-ring markers introduced by

Gatrell et al. in [10]. The geometric properties of the con-

centric circles delivered by their edges are exploited to ac-

curately detect the image of the circle common center, thus

providing a highly reliable feature point that can be used

for tracking and motion estimation. The thickness of the

rings can be used to encode the information of the marker,

typically a unique ID, thus providing a simple and reliable
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method for recognizing the different markers placed in the

scene.

The detection method proposed in this work relies on

the flow conservation property: the ingoing amount of gra-

dient magnitudes through an arc of the outermost ellipse

must be equal to the outgoing amount of gradient magni-

tudes through an arc of the innermost ellipse. This property

also holds in presence of motion blur since, as described in

[16], the image of a circular fiducial is not affected by the

blur along the line perpendicular to the direction of the mo-

tion blur. Consequently, the proposed circular fiducial can

be detected and identified without explicitly un-blurring the

image before the detection stage. Furthermore, since any

concentric circle-pair encodes –through the circular points–

the Euclidean structure of its supporting plane, the perspec-

tive distortion can be removed by estimating its rectifying

homography. While reaching the performance of other re-

cent fiducial systems under favorable conditions, we show

that the proposed fiducial system clearly outperforms these

systems under highly challenging (i.e., more realistic) con-

ditions.

The paper presents the system theoretical foundations

and describes both the circular fiducial detection step and

its subsequent validation, the latter simultaneously deliver-

ing the position of the imaged center along with the marker

ID. A comparison of its performance with a variety of re-

cent marker system under conditions of varying difficulties

is finally provided.

2. Related work

The most widely used fiducial systems use bitonal pat-

terns, usually made of two main components: low fre-

quency elements for marker detection, e.g. a square black

border [8, 12, 18], and high frequency elements for informa-

tion encodage, e.g. an internal region filled with 6×6 grid

of black and white cells [8, 18].

Thanks to the relatively simple detection algorithms al-

lowing fast detection at high frame rates even on mo-

bile phones, these systems have gained popularity in many

augmented reality applications, supported by many freely

available libraries, such as ARToolkit [12] and ARToolkit-

Plus [18].

However, this conventional approach suffers in presence

of motion blur. Whereas low frequency components remain

localizable to some extent, high frequency components are

not preserved, which prevents the extraction of the marker

identity. A trivial solution for this problem is to increase

the size of the markers in the scene. However, for many ap-

plications, this can be invasive and therefore unacceptable.

When processing video streams, temporal continuity can be

exploited to improve the detection performance and robust-

ness: the markers can be tracked across the frames, e.g. as

implemented in ARToolkit [12]. However, such tracking al-

ARTKPlus[18] RuneTag[2] PRASAD[16] Proposed

Figure 2. Prior fiducials and our proposal. From left to right, the
last two are designed to be detected under motion blur conditions.
Only the proposed detection algorithm is able to exactly match
a feature point (its center) across a collection of images, even in
presence of motion blur.

gorithms fail when the camera moves rapidly, and require

re-initialization whenever the imaged marker is no longer

detected.

Lately, fiducial systems that are robust to motion blur

have been proposed. The mono-spectrum marker [17] con-

sists of low frequency components in the form of coloured-

“degraded” dots lying on a black square background. Re-

gions of the markers are distinguished from other regions

by means of a frequency spectrum specific to the marker.

At the end of the localization process, the four marker cor-

ners are extracted as the centers of the dots located at each

corner. A drawback of such an approach is that it is assumed

that the image of a dot center corresponds to the center of

the imaged dot. However, this underlying assumption is not

valid under a projective camera model, thus preventing fea-

ture matching across a collection images. In practice, this

can significantly affect the accuracy of the retrieved pose,

because the error due to the center assumption increases

with the size of the circle, and consequently the error of

the computed pose grows as the camera gets closer to such

a marker. This remark also holds for the methods proposed

in [7] and [16]. In [7], a marker consists of four black dots,

forming a square, located on a white background. In this

approach, the marker detection is performed through ma-

chine learning techniques and it is to some extent capable

of handling the presence of motion blur.

The fiducial markers proposed in [16] and [14] are the

most similar to the one presented in this work. In [16], the

authors propose a marker made up of concentric white rings

on black background. However, even in this case, the image

of the marker’s center is incorrectly assumed to be at the ge-

ometrical center of the marker’s image. Another drawback

of this method is a very low information-coding capacity,

which leads to a library size of only four different markers,

thus dramatically limiting the number of possible applica-

tions. In [14], a fiducial system robust to motion blur is

proposed. It relies on self-similar templates defined by a

2D rotationally invariant, bitonal intensity function. How-

ever, the self-similarity property only holds in theory for

fronto-parallel acquisitions by calibrated cameras, even if

it is empirically observed robustness to perspective distor-

tions. While not discussed in [14], any identification task
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should run the detection algorithm as many times as the

number of IDs, drastically reducing the identification power

and/or increasing the computational time.

The problem of strong occlusion is addressed in Rune-

Tag [2], where a marker is composed of rings of circular

dots. The authors have shown that such a marker allows an

accurate estimation of the camera pose while being robust

to severe occlusion. The PiTag fiducial markers [3], which

are also made up of circular dots but arranged in rectangles,

have shown a similar robustness to occlusion, although with

an even smaller number of circular dots.

3. The Proposed Circular Fiducial System

The proposed circular fiducial is a planar pattern consist-

ing of a set of concentric black circular rings on a white sup-

port. Every circular fiducial naturally encodes three points

two of which being the circular points of its supporting

plane, which are complex conjugate points at infinity [15].

The circular point-pair encodes the 2D Euclidean structure

of this plane naturally, allowing to determine from its image

a metric rectification that removes the projective distortion

on the imaged marker. In the case of a calibrated camera, it

also allows to compute the camera pose with respect to the

supporting plane, up to an unknown planar rotation. An-

other benefit of circular fiducials is their known resiliance

to severe occlusions [19, 13] as well as linear motion blur

[16]. In terms of their information-coding capacity, a cir-

cular fiducial can be seen as a circular bar-code which en-

codes data by varying the widths and spacings of circular

rings. Consequently, one of its (relative) shortcomings is

the limited amount of information that can be encoded in

this bar-code compared to some other fiducials. This short-

coming can be overcome, for example, by reusing IDs but

combining them in unique patterns. Overall, despite such

an high potential for being the ‘ideal’ fiducial, the circular

ring pattern has received relatively little attention in the lit-

erature. An explanation of this lack of popularity may be

the absence of code released under a public license.

We have recently reported [4, 5] how to integrate circular

fiducials within a unified Structure-from-Motion paradigm,

where we describe how images of circular point-pairs can

be combined with images of natural points.

We assume that all views capture a cluttered scene in

which M circular fiducials with N rings are visible. The

gray-scale intensity of one image is represented by a differ-

entiable function I : [1,m] × [1, n] ⊂ R
2 → [0, 1], whose

discretized representation is the sampling of I on the do-

main [1,m] × [1, n] ⊂ N
2. The image gradient field is de-

note by ∇I : I → R
2 . We assume to be given the set

of edge points that correspond to maxima of the gradient

magnitude (e.g., using Canny’s edge detector [6]).

We use the Matlab-like notation M(1:r,1:c) for denoting

the r×c-submatrix of M selected by the row range [1, r] and

the column range [1, c]. Similarly M(:,1:c) (resp. M(1:r,:)),

selects the first c (resp. r) columns (resp. rows) of M.

3.1. Circular fiducial detection

The problem of detection is formulated as that of seeking

regions in the image that can potentially support a portion

of the external contour of the imaged circular fiducial, so-

called outer elliptical arc. To be candidates, the regions

must obey some loose geometric constraints, as convexity

and smoothing, as well as more specific photometric con-

straints derived from differential properties of the gray-scale

intensity, related to the gradient field ∇I within an imaged

circular fiducial, as reported in the next paragraphs.

There are three different selection steps which can sum-

marized as follows.

Pixel selection (§3.1.2): We create paths in the image

in the form of sequences of 2N linked edge pixels (when a

fiducial has N rings) such that the direction of the path seg-

ment starting at pixel p is given by the image gradient at p.

Then, we select pixels which appear as path ending points

the greatest number of times (through a vote procedure).

Region-pair grouping: We group into ‘inner’ regions

the selected ending points to form polygonal approxima-

tions of convex arcs and we group into ‘outer’ regions the

associated starting points.

Region-pair selection (§3.1.3): We select only region-

pairs which satisfy the ‘conservative constraint’ which ba-

sically ensures that the ingoing amount of gradient magni-

tudes through the outer region must be equal to the outgoing

amount of gradient magnitudes through the inner region.

3.1.1 Theoretical foundations of detection

At this step, in order to provide the theoretical foundations

of our approach in a simple form, we will only consider cir-

cular fiducials with one ring, delimited by its outer and inner

circles. Both circles are centered at the origin with radii 1
and r < 1, and associated with closed and open disks, B1[0]
and Br(0) in R

2. Thus , Ω = B1[0]\Br(0), defines the sur-

face of the ring between the two circles, in the following re-

ferred to as the interior of the ring. Exceptionally, the ring is

not painted black but (again for pedagogic purposes) with a

continuous gradation of gray hues (black is hue 0 and white

is hue 1) as defined by the function α : [−1, 1]2 → [0, 1] we

have α(x) = 1− ‖x ‖
2

for all x ∈ Ω (interior of the ring),

α(x) = 1 for all x /∈ Ω. This is seen in figure 3(b).

Consider a view of the scene under an imaging process

H : [−1, 1]2 → [1,m]× [1, n] ⊂ R
2 through some homo-

graphic mapping that restricts the central projection to the

ring’s supporting plane [11]. Under the assumptions that (i)

the scene is illuminated by a uniform parallel light beam,

(ii) the surface supporting the fiducial is Lambertian, (iii)

the chirality constraints are ensured, the intensity value for
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(a) (b) (c) (d) (e)

Figure 3. (a) A circular fiducial with four black rings. (b) A circular fiducial with one single ring painted with a continuous gradation of
gray hues (the inner circle has a near infinitesimal radius). Note that the circles of the fiducial in (a) are equipotentials in (b). (c) An imaged
pattern. (d) The gradient map of the imaged pattern. (e) The field lines of the gradient map.

an image point u ∈ H([−1, 1]2) is given by (see figure 3(c))

I(u) = α
�
H � 1(u)

�
(1)

For u /∈ H([−1, 1]2), I(u) is simply the luminance related

to the corresponding projected scene point. Note that since

the ring can be seen as an “infinite” set of concentric circles

associated with the equipotentials of α, their images under

H are the equipotentials of (1), the outer and inner equipo-

tentials coinciding with the images of the outer and inner

circles (see figure 3(c)) .

Assuming there are no edge points in H(Ω) except a

few outliers, we now shift our first problem of determin-

ing the points of the outer ellipse into the one of linking

each point of the outer ellipse to some point of the inner el-

lipse. Our idea for achieving this is to follow –if possible–

for each edge point ue the field line of the gradient field

∇I through ue and to stop as soon as another edge point is

encountered (see figures 3(d-e)). This field line is the pla-

nar curve passing through ue and whose tangent at each of

its points u is collinear to the vector ∇I(u), or more for-

mally, the curve has parameterization � : U ⊂ R 7→ R
2,

solution of the differential system

�
� 0(t) = ∇I(� (t))
� (t0) = u0

where (t0,u0) ∈ Ω× R
2 defines an initial condition.

Two key results are now given (cf. figure 3(e)):

Proposition 1. In the continuous image,

• Through any point in H(Ω), except the image of the
circle centre, passes one and only one field line of ∇I ;

• Any field line necessarily converges to one point on the
inner ellipse.

The proofs are omitted here due to lack of space (the proof

of the latter result relies on the fact that, when the inner

radius of the ring is 0, any field line converges to the image

of the circle center).

3.1.2 Pixel selection

Here, circular fiducials can have N rings, that is 2N con-

centric circles. The idea is to chose an adequate number N

of rings in order to guarantee a good approximation of the

field lines in the discrete image.

We call linked sequence (or path) a polygonal line with

2N edge points {ui1 , ..,uiP } as vertices, when all pairs

(uij ,uij +1 ), j ∈ [1, 2N − 1] are pairs such that uij is an

edge point and uij +1 is the closest edge point to uij , out-

side the neighbourhood of uij , that lies on the line pass-

ing through uij with (−1)j∇I(uij ) as direction. Assum-

ing K linked sequences, for any k ∈ K, let S be the

K × 2N -matrix where the row S(k,:) concatenates the in-

dices of edge points for the sequence number k and Vi =�
l ∈ K | S(l,2N) = i

	
is the set of indices of all linked se-

quences in which ui is the 2N -th (i.e., last) point. Note that

card(Vi) can be seen as the number of ‘votes’ for ui as last

point in a sequence.

If E denotes the set of indices of all edge points, then we

can state the following pixel selection rule. The set F ⊂ E
with card(F ) = T , containing the indices of the T edge

points with the T highest votes i.e., of the ui with i satis-

fying mini2 F card(Vi) ≥ maxj2 EnF card(Vj), is the set

of indices of points selected as point candidates for the in-

ner ellipses while S(∪i2 FVi, 1) yields the set of indices of

points selected as point candidates for the outer ellipses.

In practice, we have implemented this algorithm in the

discrete image as follows. An edge pixel is first (arbitrarily)

selected. We can see it as having a voting intention. It yields

a valid vote only if it is possible to build from it a polygonal

line {ui}i2 S( k; :) , whose vertices are 2N edge points satis-

fying some conditions (see below). If it is the case, the vote

is confirmed. The purpose is to create polygonal lines that

connect edge points of the outer ellipse to edge points of

the inner ellipse. The two conditions for a polygonal line to

approximate a field line arc are the following. For all j ∈
{1, ..., 2N − 1}: (i) uS( k;j +1) = uS( k;j ) +aS( k;j ) ∇I(uS( k;j ) ),
where aS( k;j ) < 0 if j is uneven and aS( k;j ) > 0 other-

wise; (ii) any segment with endpoints uS( k;j ) , uS( k;j +1) does

not include edge points other than vertices. It is worth of

mentioning that we empirically verified that the underlying

assumption holds in practice: defining a pixel as a square

whose sides have length 1, through the pixel uS( k; 1) and
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