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Abstract

The discrimination and simplicity of features are very

important for effective and efficient pedestrian detection.

However, most state-of-the-art methods are unable to

achieve good tradeoff between accuracy and efficiency. In-

spired by some simple inherent attributes of pedestrians

(i.e., appearance constancy and shape symmetry), we pro-

pose two new types of non-neighboring features (NNF):

side-inner difference features (SIDF) and symmetrical sim-

ilarity features (SSF). SIDF can characterize the differ-

ence between the background and pedestrian and the dif-

ference between the pedestrian contour and its inner part.

SSF can capture the symmetrical similarity of pedestrian

shape. However, it’s difficult for neighboring features to

have such above characterization abilities. Finally, we

propose to combine both non-neighboring and neighbor-

ing features for pedestrian detection. It’s found that non-

neighboring features can further decrease the average miss

rate by 4.44%. Experimental results on INRIA and Caltech

pedestrian datasets demonstrate the effectiveness and effi-

ciency of the proposed method. Compared to the state-of-

the-art methods without using CNN, our method achieves

the best detection performance on Caltech, outperforming

the second best method (i.e., Checkerboards) by 1.63%.

1. Introduction

Pedestrian detection is a premise in many computer vi-

sion tasks including gait recognition, behavior analysis, ac-

tion recognition, and camera-based driver assistance. Gen-

erally speaking, the performance of pedestrian detection is

determined by the performance of feature extraction and

classification. This paper focuses on feature extraction.

There are three manners for feature extraction: (1) com-

pletely Hand-Crafted (HC) features, (2) Hand-Crafted can-

didate features followed by Learning Algorithms (HCLA),

and (3) Deep Leaning (DL) based features. Due to simplic-

ity and robustness, it is much more possible for HCLA to

achieve good tradeoff between efficiency and accuracy. So

this paper concentrates on HCLA.

Usually, the input of HCLA for pedestrian detection is

CIE-LUV color channels, gradient histogram channels, gra-

dient magnitude channel, etc. Once the channels are spec-

ified, the question remained is how to generate candidate

features from the channels. Most of state-of-the-art meth-

ods generate the candidate features by using local (e.g., lo-

cal mean features) or neighboring features (e.g., haar fea-

tures). In fact, some inherent attributes of pedestrians can

be also used for feature design. Inspired by appearance

constancy and shape symmetry of pedestrians, we design

two types of non-neighboring features: side-inner differ-

ence features (SIDF) and symmetrical similarity features

(SSF). The contributions of the paper are as follows:

1) Appearance constancy and shape symmetry can be

seen as the inherent attributes of pedestrians. Inspired by

these attributes, we propose side-inner difference features

(SIDF) and symmetrical similarity features (SSF), respec-

tively. Compared to some state-of-the-art features, our fea-

tures are oriented non-neighboring features. SIDF can char-

acterize the difference between the background and pedes-

trian and the difference between the pedestrian contour and

its inner part. SSF can capture the symmetrical similarity

of pedestrian shape. However, it’s difficult for neighboring

features to have such above characterization abilities.

2) We propose to employ non-neighboring and neighbor-

ing features for pedestrian detection. Among all the selected

features, about 70% are neighboring features and 30% of

them are non-neighboring ones. So the non-neighboring

features are complementary to the neighboring ones.

3) Compared to the state-of-the-art methods without us-

ing CNN, we achieve the best detection performance (i.e.,

16.84% miss rate on Caltech). Meanwhile, our methods

achieve the best performance tradeoff between detection ef-

ficiency and log-average miss rate only by common CPU.

Moreover, SIDF and SSF may also be combined with CNN

features to further boost the detection performance.

The rest of the paper is organized as follows. We review

related work in Section 2. The proposed method is given in

Section 3. Experimental results are provided in Section 4.
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We then conclude in Section 5.

2. Related work

Pedestrian detection methods can be divided into three

families [4]: DPM (Deformable Part Detectors) variants

[13, 14, 23, 27], deep networks [15, 17, 28] and decision

forests [2, 11, 32]. Our method can be categorized into the

family of decision forests. Specifically, the process of this

kind of methods is as follows: 1) a set of channel images

are generated from an input image; 2) then, features are

extracted from patches of the channels; and 3) finally, the

features are fed into a decision forest learned via AdaBoost

[37]. Feature extraction is a very important step.

Integral Channel Features (ICF) [11] is one of the most

successful feature extraction method four years after His-

tograms of Oriented Gradients (HOG) [8] was proposed. In

ICF, Dollár et al. [11] proposed to combine three types of

channels: LUV color channels, normalized gradient mag-

nitude, and histogram of oriented gradients (6 channels).

First-order and higher-order features are then generated

from the channel images [11] . Soft cascade [5, 35] is then

used for learning discriminative features [11]. Note that ICF

is also known as ChnFtrs.

Aggregated Channel Features (ACF) [9], SquaresChn-

Ftrs [3], InformedHaar [36], Locally Decorrelated Chan-

nel Features (LDCF) [21], and Checkerboards [37] employ

the same channel images as ICF. In ACF, the pixel sum

of each block in each channel is computed and then the

resulting lower resolution channels are smoothed [9, 10].

SquaresChnFtrs [3] is simpler than ICF because only the lo-

cal sum of squares in each channel image is used as features.

InformedHaar [36] is specifically designed for pedestrian

detection where a pool of rectangular templates are tailored

to the statistical model of the up-right human body across

the channels. By using the technique of Linear Discrimi-

nant Analysis (LDA) [16, 26], the LDCF features are decor-

related so that they are suited for orthogonal decision trees

[21]. The decorrelation can be achieved by convolution

with a PCA-like filter bank. Checkerboards [37] generalizes

ICF by using filter banks to compute features from channel

images. Six types of filters are considered: InformedFil-

ters, CheckerboardsFilters, RandomFilters, SquaresChntrs

filters, LDCF8 filters, and PcaForeground filters.

SpatialPooling+ [25, 24] does not take channel images

as input. Instead, it applies the operator of spatial pool-

ing (e.g., max-pooling) on covariance descriptor and Local

Binary Pattern (LBP). Blob-like operator [19] and Torque

operator [22] can be also used for image abstraction.

According to [4] and our experimental results, the per-

formance of the above methods can be summarized as fol-

lows: On the Caltech pedestrian dataset [1, 12], the miss

rates of the above methods are ICF > ACF > SquaresChn-

Ftrs > InformedHaar > LDCF > SpatialPooling+ >

Checkerboards. Loosely speaking, the detection speeds of

these methods are SpatialPooling+ < ICF < SquaresChn-

Ftrs < Checkerboards < InformedHaar < LDCF < ACF. It

can be concluded that no method can simultaneously obtain

the best log-average miss rate and detection speed. That

is, these methods are unable to achieve satisfying tradeoff

between accuracy and efficiency.

Recently, the methods based on CNN have achieved very

good performance [6, 20, 30, 31, 34]. For example, Tian

et al. [30] proposed DeepParts to improve the detection

performance by handling occlusion with an extensive part

pool. Though the methods based CNN can achieve the best

performance, it needs the relatively expensive device (i.e.,

GPU). On the other hand, the simple feature design can also

be complementary to CNN. For example, by combining the

simple local features (e.g, ACF [9], Checkerboards [37],

and LDCF [21]) and very deep CNN features (e.g., VGG

[29] and AlexNet [18]) , Cai et al. [6] could decrease the

miss rate from 18.9% to 11.70%. So in this paper, we focus

the feature design in the traditional methods.

3. Our methods

3.1. Appearance constancy and shape symmetry

Most state-of-the-art features for pedestrian detection are

designed to describe the local image region. Thus, they

don’t make full use of the inherent attributes of pedestri-

ans. In fact, some inherent attributes of pedestrians can be

used to further improve detection performance. For exam-

ple, Zhang et al. [36] incorporate the common sense that

pedestrians usually appear up-right into the design of sim-

ple and efficient haar-like features. In this paper, we incor-

porate the appearance constancy and shape symmetry into

the feature design. First of all, we give the explanations of

appearance constancy and shape symmetry. Fig. 1 gives

some examples of the cropped pedestrians.

1) Appearance Constancy. The appearances of pedes-

trians are usually contrast to the surrounding background.

Meanwhile, pedestrians can be seen as three main different

parts (i.e., head, upper body, and legs). The appearances

inside these parts are usually constancy. For example, the

woman wears the sky-blue coat and black pants in Fig. 1(a).

We call this inherent attribute of pedestrians appearance

constancy. Thus, the regions located inside the pedestrians

(e.g., patches B in Figs. 1(a) and (b)) are contrast to that

located in the background (e.g., patches A in Figs. 1(a) and

(b). Note that patches A and B lie in the same horizontal.

Patches B are called the inner patches, and patches A are

called the side patches.

2) Shape Symmetry. As stated in [36], pedestrians usu-

ally appear up-right. Thus, the pedestrian shape is loosely

symmetrical in the horizontal direction. For example, the

symmetrical region (patches A and A′) in the Figs. 1(c) and
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Figure 1. Some examples of the cropped pedestrians.
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Figure 2. Average values of channel images . (a) Inversed L (Lu-

minance) channel. (b) U channel. (c) Inversed V channel. (d) G

channel.

(d) have the similar characteristic. This inherent attribute is

called shape symmetry.

Inspired by the above appearance constancy and shape

symmetry, we can design two types of non-neighboring fea-

tures. It can be explained by the average appearance of

pedestrians in channel images such as L, U, V, and G. Fig. 2

gives the average values of above four channel images. Due

to the appearance constancy, the pixel values of pedestrians

in L, U, and V channel images are similar in the same hori-

zontal, which are different from that of the two-side regions.

Meanwhile, the pixel values of the inner part of pedestrians

in G channel image are constantly small, and the pixel val-

ues of pedestrian contour in G channel image are relatively

large. Thus, the large difference in G channel image can be

characterized by not only the neighboring feature formed

by patches A and B but also the non-neighboring feature

formed by patches C and D in Fig. 2(d). Though there is lit-

tle difference between the inner part and contour in V chan-

nel (Fig. 2(c)), the difference between the inner part and

its two side background can be characterized by the non-

neighboring feature formed by patches A and B. Due to

shape symmetry, the symmetrical regions of pedestrians in

the horizontal direction have the similar characteristic. For

example, the symmetrical patches E and E′ in Fig. 2(d) de-

scribe the similar edge characteristic, while patches C and

C ′ in Fig. 2(c) are both bright. Figs. 2(a) and (b) also

support the above two conclusions.

(a)                 (b) (c) 

 

(e ) 

Object 1

Object 2

 

Neighboring features
 

Non-neighboring features

 

(d) (f ) 

Figure 3. Demonstration of the discrimination and usefulness of

non-neighboring features. (a) and (d) show Object 1 and Object 2,

respectively. In (b) and (e), neighboring features are extracted. In

(c) and (f), non-neighboring features are extracted.

The discrimination and usefulness of non-neighboring

features are graphically supported by Fig. 3. In Fig. 3,

there are two objects (classes) to be classified. We call the

object in Fig. 3(a) Object 1 and the object in Fig. 3(d) Ob-

ject 2. There is a line in the middle of Object 1 whereas

the inner part of Object 2 is flat. In both Figs. 3(b) and

(e), two neighboring dashed rectangles form a feature. We

can see that this neighboring feature is unable to distinguish

between Object 1 and Object 2 because the values of neigh-

boring features in Object 1 (i.e., Fig. 3(b)) and Object 2

(i.e., Fig. 3(e)) are equal. Now we use in Figs. 3(c) and

(f) two non-neighboring patches to form a feature. Because

the blue dashed patch in Fig. 3(c) contains a line whereas

the blue dashed patch in Fig. 3(f) contains nothing, the non-

neighboring features in Object 1 (i.e., Fig. 3(c)) and Object

2 (i.e., Fig. 3(f)) have different values. The two objects

can be correctly classified according to the different values.

This demonstrates the discrimination and usefulness of non-

neighboring features.

3.2. Side-inner difference features inspired by ap-
pearance constancy

Inspired by appearance constancy, we design the non-

neighboring difference features in the same horizontal. We

call this oriented non-neighboring difference features Side-

Inner Difference Features (SIDF). Fig. 4 gives some possi-

ble forms of SIDF. Fig. 4(a) shows that the distance d(A,B)
of non-neighboring patches A and B in SIDF can be dif-

ferent. Theoretically, the distance can be arbitrary. But it

results that the number of all possible SIDF is very large.

Because a pedestrian is horizontally symmetrical in a loose

sense, we restrict the location l(B) of B in the interval of

the locations l(A) and l(A′) where A′ is the horizontal mir-

ror of A. That is, l(B) ∈ [l(A), l(A′)]. As demonstrated in

Fig. 5, l(B) is randomly sampled from [l(A), l(A′)] in our

experiments.

Both Figs. 4(b) and (c) show varying sizes of patches.

But in Fig. 4(b) both two non-neighboring patches equally

vary with size (scale) whereas in Fig. 4(c) only one patch
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  A B

(a) Varying distance between two

patches.

(b) Varying size of two

patches.

(c) Varying size of one

patch with the other fixed.

(d) Varying aspect ratio.

Figure 4. Some possible forms of side-inner difference features

(SIDF).
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(b)

 
   B AA

(c)

 
   B AA

(d)

Figure 5. The patch B is randomly located between the patch A

and its horizontal mirror A′. The locations of patch B in (a) and

(b) are different. But they are both among A and its mirror A′. (c)

and (d) show that the width of patch B can be changed.

 

 
  

 

  
A A A A A A

Figure 6. The size of patch A is allowed to change inside the max-

imum square indicated by green squares.

varies its size. It’s good enough for letting A and B have

the different width but the same height. Figs. 5(c) and (d)

also give an example of the different widths of patches A
and B. Fig. 4(d) shows SIDF with varying aspect ratio.

The size of a patch (e.g., patch A in Fig. 5(a)) is allowed

to change in a reasonable range. In this paper, the variation

of a patch is limited to a maximum square. In other words,

the sizes of both patches A and B are allowed to be not

larger than that of the maximum square. The green squares

in Fig. 6 are maximum squares and patches have to be in-

side them. A typical maximum square is of size 8× 8 cells

(1 cell=2× 2 pixels).

Suppose that the side-inner difference feature f(A,B)
consists of two patches A and B (see Fig. 5(a)). The num-

ber of pixels of A and B are denoted by NA and NB . Let

SA and SB be the pixel sum in A and B in each channel, re-

spectively. Then the side-inner difference feature f(A,B)

(a)

Patch    

Sub-patch

Sub-patch

Sub-patch

A

1A

2A

3A

Patch    

Sub-patch

Sub-patch

Sub-patch

A

1A

2A

3A

(b)

Figure 7. Examples of symmetrical similarity features. (a) is an

example of SSF located in the pedestrian. (b) shows a specific

form of SSF.

can be calculated by

f(A,B) =
SA

NA

−
SB

NB

, (1)

where NA and NB are used for normalization.

3.3. Symmetrical similarity features inspired by
shape symmetry

As stated in Section 3.1, the shape of pedestrian is sym-

metrical. Thus, patches A and A′ in Fig. 5 have the

similar characteristic. The symmetrical similarity features

f(A,A′) of patches A and A′ can be calculated by the fol-

lowing equation:

f(A,A′) = |fA − fA′ |, (2)

where fA and fA′ represent the features of patches A and

A′ (e.g., histogram features and local mean features). For

the computational efficiency, we just use the local mean fea-

tures to represent the patches. Namely, fA = SA/NA and

fA′ = SA′/NA′ . Then, Eq. (2) can be written as the fol-

lowing:

f(A,A′) = |
SA

NA

−
SA′

NA′

|. (3)

However, due to the changes of the pedestrian posture,

the pedestrian symmetry is relatively loose. It results that

Eq. (3) is very sensitive to the pedestrian deformation.

To eliminate the above influence caused by pedestrian

deformation, we replace the mean features of patches by

the max-pooling features [33]. In Fig. 7, two symmetrical

patches A and A′ are represented by three different color

sub-patches, respectively. For examples, patch A consists

of three sub-patches A1, A2, and A3. The sub-patches are

randomly generated inside the patch A. The size and aspect

ratio of them can arbitrary, whereas the area of them should

be larger than half of patch A. Then, the feature value of

patch A is set as the maximum of mean values of three sub-

patches. It can be expressed as:

fM (A) = max
i=1,2,3

Si

Ni

. (4)
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(a) Local mean features.
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(b) Neighboring difference features.

Figure 8. Some possible forms of neighboring features. The green

squares are called maximum squares.

Note that the maximum is replaced by minimum in L and V

channel images. Then, the symmetrical symmetry features

f(A,A′) of patches A and A′ is calculated by the following

equation:

f(A,A′) = |fM (A)− fM (A′)|. (5)

The size of the symmetrical patches A and A′ is allowed

to change in a reasonable range, which varies from 6 × 6
cells to 12×12 cells. As the symmetry in pedestrians mainly

exists in L, U, V, and G channel images, we only use the

above channel images to generate SSF.

3.4. Neighboring features

In fact, both non-neighboring and neighboring features

are crucial for pedestrian detection. In this section, we pro-

pose to form the pool of neighboring features by using local

mean features (see Fig. 8(a)) and neighboring difference

features (see Fig. 8(b)) with enough freedom in size, aspect

ratio, patch direction, and partition location. The left por-

tion of Fig. 8(a) shows that the size of a feature is allowed

to vary in a large extent. Patch direction is either vertical or

horizontal. The patch direction in the middle of Fig. 8(a)

and the left portion of Fig. 8(b) is vertical whereas the di-

rection in the right portion of Fig. 8(a) and the right portion

of Fig. 8(b) is horizontal.

Partition location is illustrated in Fig. 8(b) which is de-

fined as the location where two neighboring patches inter-

sect. Assigning freedom in partition location strengthens

representative and discriminative ability of the features.

To avoid the large number of features, we specify a max-

imum square. The sizes of local mean features and neigh-

boring difference features are allowed to be not larger than

the size of the maximum square. The green squares in Fig.

8 are maximum squares. As stated in Section 3.2, a typical

size of the maximum square is 8×8 cells.

The neighboring features illustrated in Fig. 8 are suitable

to be computed with integral image. Hence the feature ex-

traction process is very efficient. Note that neighboring dif-

ference features can be calculated using the same formula

(i.e., Eq. (1)) of non-neighboring features.

In our method, both the neighboring (i.e., local mean

features and neighboring difference features) and non-

neighboring features (i.e., SIDF and SSF) are used as input

of decision forests and AdaBoost.

4. Experiments

The public Caltech pedestrian dataset [1, 12] and IN-

RIA dataset [8] are employed for evaluation. In the INRIA

dataset, there are 1237 pedestrian images used for training

and 288 pedestrian images used for evaluation.

The Caltech pedestrian dataset is more challenging than

the INRIA dataset and hence has become a benchmark. It

consists of approximately 10 hours of 640×480 30Hz video

[1]. The 10 hours data consists of 11 videos with the first 6

videos are used for training and the last 5 videos for testing.

The standard positive training data is formed by sampling

one image out of each 30 sequential frames. To enlarge the

number of training samples, we sample a frame from every

15 or 3 frames instead of every 30 frames. The resulting

training sets are called Caltech 2x and Caltech 10x [37].

Whenever Caltech 2x training set or Caltech 10x training

set is used, the test dataset is the same. The testing dataset

consists of 4024 frames among which there are 1014 posi-

tive images.

4.1. Self-comparison using the Caltech 2x training
data

Before comparing with state-of-the-art methods, exper-

imental results on Caltech 2x dataset are reported to show

how the proposed method works and the importance of each

component of the proposed method. Note that the Caltech

2x training set instead of Caltech10x training set is used.

The experimental setup is as follows. Classical 10 chan-

nel images (i.e., HOG+LUV) are used for generating fea-

tures. The final classifier consists of 4096 level-2 decision

trees. The classifier is learned by five rounds, where the

numbers of trees in subsequent rounds are 32, 128, 512,

2048, and 4096, respectively. Each tree is built by randomly

sampling 1/32 of features from the large pool of features.

5000 hard negatives are added after each round and the cu-

mulative negatives are limited to 15000. The stride of slid-

ing windows is 4 pixels. The model size is 64×128, which

consists of 2048 cells (1 cell=2x2 pixels). As the pedes-

trian is generally taller than 50 pixels, each testing image is

upsampled by one octave.

In NNNF (a.k.a. NNF+NF), both Non-Neighboring Fea-

tures (NNF) and Neighboring Features (NF) are employed.

In the NNF, there are two types of non-neighboring features:
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24.34% NNNF−No

23.06% NNNF

Figure 9. Self-comparison: ROC curves of NF, and NNNF-No,

and NNNF on the Caltech dataset.

Method MR ∆ MR

NF 27.50% N/A

NF+SIDF 25.67% +1.83%

NF+SSF 25.20% +2.30%

NNNF-No 24.34% +3.16%

NNNF 23.06% +4.44%

Table 2. Comparison of Log-average Miss Rates

SIDF and SSF. NF+SIDF or NF+SSF mean that the neigh-

boring features are combined with only one type of non-

neighboring features (i.e., SIDF or SSF). In SIDF and NF,

the channel-specific normalization can be used in Table 1.

In Table 1, x is a feature in a detection window. µ and σ
are the mean and variance of the features in the detection

window. µG is the mean of G channel. Because U and V

channels are relatively stable to variations in illumination,

we do not perform normalization. We denote NNNF-No

the method which is the same as NNNF except that no nor-

malization is conducted in SIDF and NF.

The ROC curves of NF, NNNF-No and NNNF are shown

in Fig. 9. It is seen that the performance of NNNF is sys-

tematically better than that of NF, meaning that incorpo-

rating NNF is useful for improving detection performance.

Meanwhile, one can observe that NNNF-No is inferior to

NNNF. NNNF employs channel-specific normalization in

NF and SIDF whereas NNNF-No does not perform normal-

ization. So it is concluded that pedestrian detection benefits

from the proposed channel-specific normalization.

The above observation can also be seen from Table 2

where the log-average miss rates are given. The miss

rates of NNNF (i.e., NNF+NF), NNNF-No, and NF are

23.06%, 24.34%, and 27.50%, respectively. The miss rate

 

 

  

SSF 11.34%

NF 69.97%

SIDF 18.69%

 

A B
B

A
A

B

A

B

A

A A  
A A

 
A A

A A BB

BA

A B

Figure 10. Among all the selected features, about 30% are non-

neighboring features and 70% are neighboring features. Some rep-

resentative non-neighboring and neighboring features also shown.

A B

(a)

AB

(b)

A A

(c)

 
 

A A

(d)

Figure 11. Several selected non-neighboring features. The first

two features are SIDF, and the last two features are SSF.

of NNF+NF is 4.44% smaller than that of NF. So it is said

that non-neighboring features contribute significantly for

improving detection performance. Specifically, NF+SIDF

and NF+SSF outperform NF by 1.83% and 2.30%, respec-

tively. NNNF outperforms NNNF-No by 1.28%. Though

the contribution of channel-specific normalization is not as

significant as non-neighboring features, it is steadily helpful

for improving detection performance.

Totally, 12288 features are selected, which consist of

3690 non-neighboring features and 8598 neighboring fea-

tures. Among non-neighboring features, there are 2297

side-inner difference features (SIDF) and 1393 symmetri-

cal similarity features (SSF). That is, the proportions of

SIDF, SSF, and NF are approximately 18.69%, 11.34%

and 69.97% (see Fig. 10). We can conclude that non-

neighboring features are complementary to neighboring

features. Several representative forms of non-neighboring

(SIDF and SSF) and neighboring features (NF) are also

shown in Figs. 10.

In Fig. 11, the representative non-neighboring features

are also visualized on pedestrian images. The first two im-

ages show the side-inner difference features, and the last

two images show the symmetrical similarity features.

In fact, SIDF features can be categorized into the follow-
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Contour body

Inner body

(a)

42.66% CI-SIDF

50.11% BP-SIDF

7.23% O-SIDF

(b)

Figure 12. CI-SIDF, BP-SIDF, and O-SIDF features. (a) The

ternary model of pedestrians. (b) The portions of SIDF.

ing three types: 1) A SIDF feature is called Contour-Inner

SIDF (CI-SIDF) feature if one of its patch is located on the

pedestrian contour and the other is located inside the pedes-

trian; 2) A SIDF feature is called Background-Pedestrian

SIDF (BP-SIDF) feature if one of its patch is on the back-

ground and the other patch is inside or on the contour of a

pedestrian; and 3) A SIDF feature different from CI-SIDF

and BP-SIDF features is called Other SIDF (O-SIDF) fea-

ture. To know the proportions of the three types of SIDF

features, a ternary model (Fig. 12(a)), consisting of back-

ground, contour body, and inner body, is created according

to average appearance (e.g., Fig. 2(d)) of pedestrians. All

the 2297 selected SIDF features are classified to CI-SIDF,

BP-SIDF, and O-SIDF by computing the intersection of a

SIDF feature and the ternary model. The results given in

Fig. 12(b) indicate that the proportions of CI-SIDF, BP-

SIDF, and O-SIDF are 42.66%, 50.11%, and 7.23%, respec-

tively. Fig. 12(b) tells that SIDF features not only capture

the difference the contour of a pedestrian and its inner part

but also utilize the difference between the background and

a pedestrian. Background can be regarded as context of a

pedestrian image and hence context has been proved to be

effective in object detection and recognition. It is difficult

for neighboring features to utilize the context information.

4.2. Comparison with state-of-the-art methods on
Caltech dataset

The proposed NNNF method can adopt different levels

(depths) decision trees. In this section, NNNF-L2 stands

for the NNNF method where level-2 trees are utilized. The

Caltech 2x training data is used for NNNF-L2. All param-

eters in NNNF-L2 are the same as those in Section 4.1. In

NNNF-L4, level-4 trees are employed. The Caltech 10x

training data is used for NNNF-L4. The resulting classifier

is composed of 4096 level-4 decision trees and each tree is

built by randomly sampling 1/2 of features from the feature

pool. The decision trees are obtained after five rounds. In

each round, 20000 hard negatives are added and the cumu-

lative negatives are limited to 50000. Other parameters are

the same as those in Section 4.1.

Fig. 13 compares NNNF-L2 and NNNF-L4 with the
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Figure 13. Comparison with state-of-the-art methods on the Cal-

tech dataset.
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Detection quality on Caltech test set

 

 

Without CNN

With CNN

Figure 14. Miss rate of the state-of-the-art methods. The methods

with blue bars are based on CNN. The methods with red bars are

not using CNN.

state-of-the-art methods. The curves of ACF-Caltech [12]

are obtained when they are trained on the Caltech training

set. The models of VJ [32], HOG [8], LatSvm-V2 [14], and

Roerei [3] are trained on the INRIA dataset. The curves of

other methods are obtained when the training set is Caltech

10x. They all utilize the Caltech testing set for evaluation.

The following observations can be seen from Fig. 13.

Even the small Caltech 2x training dataset is used, the pro-

posed NNNF-L2 is better than LDCF [21] whose models

are trained from the large Caltech10x dataset. Specifically,

the log-average miss rate of NNNF-2 is 23.06%.

It can also be seen from Fig. 13 that the proposed NNNF-

L4 is superior to all other methods. The log-average miss

rate of NNNF-L4 is as small as 16.84% whereas the log-

average miss rate of TA-CNN [31] and Checkerboards [37]

are 20.86% and 18.47%, respectively. Though the proposed

non-neighboring and neighboring features are much simpler

than those in CNN and Checkerboards, they result in better

detection results.

According to whether using CNN or not, Fig. 14 divides

the state-of-the-art methods into two classes. The meth-

ods with red bars do not use CNN. NNNF-L4 achives the
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Figure 15. Log-average miss rate (MR) versus frames per second

(FPS) on the Caltech.

best detection performance, outperforming Checkerboards

[37] by 1.63%. The methods with blue bars are based on

CNN. CompACT-Deep [6] achieves the lowest miss rate

(i.e., 11.70%) by combination of some local channel fea-

tures (e.g., ACF [12], Checkerboards [37], and LDCF [21])

and deep features (e.g., VGG [29]). Though CompACT-

Deep [6] has a better performance than NNNF-L4, the im-

provement of CompACT-Deep are based on very deep CNN

model (i.e., VGG). When only using the above local fea-

tures and small CNN, CompACT can only achieve 18.9%,

which is inferior to NNNF-L4. It means that NNNF-L4 are

much more effective than the local features used in Com-

pACT. With very deep CNN, NNNF can also boost the de-

tection performance [7].

The log-average miss rates and frames per second of the

methods without CNN are visualized in Fig. 15. It is desir-

able if miss rate is as small as possible and FPS is as large

as possible. So Fig. 15 implies that the proposed NNNF-L4

achieves the best tradeoff between miss rate and FPS. The

log-average rate of NNNF-L4 is superior to that of Checker-

boards, and it is also 2.28 times faster than Checkerboards.

Note that the detection speed is measured on a computer

with an Intel i7 CPU and a 640×480 image with the height

of a pedestrian not less than 50 pixels. GPU is not used.

4.3. Comparison with state-of-the-art methods on
the INRIA dataset

Experiments are also conducted on the INRIA dataset.

Because pedestrian height in both the training and test-

ing sets are larger than 100 pixels, we train a model with

64×128 pixels. The model consists of 2048 level-3 decision

trees. Other parameters are the same as those in Section 4.1.

Experimental results are shown in Fig. 16. It can be

observed that NNNF achieves the best performance (log-

average miss rate is 12.25%). The miss rate of NNNF is

7.71%, 5.03%, and 2.18% lower than that of LatSvm-V2

[14], ACF [9], and InformedHaar [36]. NNNF outperforms

LDCF [21] by 1.54%. The advantage of NNNF over LDCF

[21] and Roerei [3] is more remarkable for the complex Cal-

tech dataset than for the simple INRIA dataset.

The comparison of detection speed and miss rate of dif-

ferent methods is given in Fig. 17. The image to be de-

tected has 640×480 pixels and the height of a pedestrian
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Figure 16. Comparison with state-of-the-art methods on the IN-

RIA dataset.
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Figure 17. Log-average miss rate (MR) versus frames per second

(FPS) on the INRIA.

is not less than 100 pixels. One can see that NNNF out-

performs in terms of log-average miss rate all the methods

except Spatialpool. Though slightly lower than the miss rate

of Spatialpool, NNNF is 55.86 times faster than SpatialPool

[24]. Therefore, our method is able to get the best tradeoff

between miss rate and detection speed.

5. Conclusion

In this paper, we have presented an effective and efficient

pedestrian detection method. The main contribution lies in

the proposed two types of non-neighboring features (NNF):

side-inner difference features (SIDF) and symmetrical sim-

ilarity features (SSF) which were found to be complemen-

tary to the proposed neighboring features (NF). SIDF fea-

tures characterize not only the difference between contour

of a pedestrian and its inner part but also the difference of

the background and pedestrian. SSF can capture the sym-

metrical similarity of pedestrian shape. Though the forms

of the proposed NNF and NF features are very simple, com-

bining them results in the best tradeoff between miss rate

and frames per second.
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