
BORDER: An Oriented Rectangles Approach

to Texture-less Object Recognition

Jacob Chan1, Jimmy Addison Lee2 and Qian Kemao1

1School of Computer Engineering (SCE), Nanyang Technological University
Block N4 Nanyang Avenue, Singapore 639798
jchan015@ntu.edu.sg, MKMQian@ntu.edu.sg

2Institute for Infocomm Research (I2R), Agency for Science, Technology and Research (A*STAR)
1 Fusionopolis Way, Connexis (South Tower), Singapore 138632

jalee@i2r.a-star.edu.sg

Abstract

This paper presents an algorithm coined BORDER
(Bounding Oriented-Rectangle Descriptors for Enclosed
Regions) for texture-less object recognition. By
fusing a regional object encompassment concept with
descriptor-based pipelines, we extend local-patches into
scalable object-sized oriented rectangles for optimal
object information encapsulation with minimal outliers.
We correspondingly introduce a modified line-segment
detection technique termed Linelets to stabilize keypoint
repeatability in homogenous conditions. In addition, a
unique sampling technique facilitates the incorporation
of robust angle primitives to produce discriminative
rotation-invariant descriptors. BORDER’s high competence
in object recognition particularly excels in homogenous
conditions obtaining superior detection rates in the
presence of high-clutter, occlusion and scale-rotation
changes when compared with modern state-of-the-art
texture-less object detectors such as BOLD and LINE2D
on public texture-less object databases.

1. Introduction

Recognition of texture-less objects has become
increasingly significant in modern times as the world
diversifies into 2D-3D research areas such as Augmented
Reality and 3D reconstruction/printing. Yet, these objects
make detection challenging even for state-of-the-art
descriptor-based detectors like the popular SIFT (Scale
Invariant Feature Transform) [1], and SURF (Speeded
Up Robust Features) [2]. The key factor that inhibits
decent performance in homogeneity originates from the
scarcity of local salient information, which impedes
the effectiveness of keypoint registration and ultimately
degrading the performance of these local patch-based
description-matching paradigms. Consequently, this led to

many variants of texture-less detection schemes, therefore
potentially excluding many descriptor-based virtues such
as scale-rotation invariance, model scalability, and the high
distinctiveness in the presence of occlusion and clutter.

Current contemporary texture-less object detectors
mainly fall into two categories to cope with the lackluster
information that these objects resonate. The first technique
involves edge/gradient-based template matching [3–9],
where objects are trained with various indifferent methods
and windowed through the scene to find the best matched
location. The popularity of this approach stems from its
ability to encompass the object in its entirety, thus granting
optimal object description in both textured and homogenous
domains at efficient runtimes. However, its robustness
quickly diminishes in occluding circumstances, and would
need sophisticated amounts of training data to uphold
invariances such as rotation, scale and various vantage
viewpoints. The second technique assumes an edge-feature
aggregation approach [10–14], often adopting a partial
SIFT-like pipeline to describe its grouped edge-features.
These algorithms typically form interest-points by engaging
a line-based representation of the edges, while exploiting
various methods to aggregate and describe their associative
properties. Despite incorporating virtues like scale-rotation
invariance as well as model scalability, this technique
often suffers from stability issues especially during
occlusion where edges become altered, affecting its
size and potentially causing shifts in the interest-points.
Furthermore, its spatial feature-grouping approach often
degrades due to nearby clutter, corrupting the aggregations
and eventually their descriptors.

In this paper, we aim to design a detector that
combines texture-less based techniques with qualities
from the descriptor-based pipeline to robustly recognize
homogenous objects in high clutter and occlusion. Our
proposed work BORDER, commences its SIFT-like
pipeline with a detection scheme to meaningfully
divide elongated line-segments into smaller equal-sized
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Fig. 1: BORDER’s texture-less object detection under clutter and
occlusion. (Top) input images, (Bottom-left) feature matching and
detection, (Bottom-right) multi-sized oriented rectangle matches.

fragments (termed Linelets) to stabilize interest-point
shifts in occlusion. Next, we capture regional object
information using an encapsulation concept by acclimating
descriptor-based local patches into larger, object-sized
scalable oriented rectangles. These rectangles undergo a
unique rotational search technique to find ideal positions
to optimally describe the object from a keypoint’s
“point-of-view”. Furthermore, we deploy BORDER in a
multi-sized rectangle scheme to incorporate sub-sectional
encapsulation for added occlusion resistivity. Subsequently,
encompassed regions undertake a linear sampling process
to accumulate state-of-the-art rotation-invariant angle
primitives [10] to form its descriptors. Finally, we match
BORDER descriptors by exercising the randomized
kd-tree forest [15] after a pre-processing procedure. Fig. 1
presents an object detection instance of BORDER with its
multi-sized oriented rectangle scheme in a cluttered scene.

The rest of the paper is organized as follows. Section 2
discusses the related work. Section 3 presents the BORDER
methodology. Section 4 showcases the experiment results.
Lastly, section 5 concludes this work.

2. Related Work

Given its impressive detection rates even in the
presence of clutter and occlusion, BOLD (Bunch of Line
Descriptors) [10] is arguably the current leading texture-less
descriptor-based detector. It uses detected line-segment
midpoints as interest-points to aggregate nearby segments
via k nearest neighbors (kNN), while describing them using
their unique angle primitives. However, as revealed in
their paper, nearby distractors tend to cause aggregations
to include unwanted segments. Furthermore, line-segment
midpoints may be susceptible to shifts due to various factors
making the repeatability of the interest-points questionable.
Another work that resembles BOLD is [11], where lines
are similarly employed for detection, but are described
by a pairwise structure. Geometrical, color and distance
relationships within each line pair then proceed to train
its classifier. Other works of similar nature such as [12,
13] likewise use line aggregations, though with indifferent
primitives and training methods. Damen et al. [14] proposed

using edgelets (short straight segments defined by its
midpoint and orientation) to accumulate traced angled paths
by reflecting off other edgelets to form constellations. The
resultant collection of path orientations and distances are
subsequently encoded to form its descriptors. Even though
this method feels similar to BOLD, it lacks descriptor
distinctiveness. Moreover, its path reflection method is very
sensitive to occlusion and noise, as constellation paths
would differ due to missing or additional edgelets. Other
pioneering algorithms of significance in this genre includes
a triple-edge feature with a point-based geometric hashing
comparison method by Proctor and Illingworth [16], and
a cubist approach by Nelson and Selinger [17] using
boundary segments called key curves to generate patches
for feature extraction.

Template-based matchers are another widely researched
area of texture-less object detection. One of the most
significant work termed LINE2D (2D templates) or
LINEMOD (2D templates+depth maps) [3, 4] uses
quantized gradient orientations to form response maps for
input windowing comparisons through a similarity measure.
LINE2D achieved real-time detection while producing
decent results in homogeneity, but quickly degrades under
clutter and occlusion. Hsiao and Herbert [18] followed up
by attaching an occlusion reasoning component to LINE2D,
enhancing its detection rates under highly distractive
scenes. Even so, LINE2D’s template-based origin leads to
scalability issues, often requiring voluminous number of
templates for recognition in variances such as rotation, scale
and perspective changes. Other notable template-based
works include techniques such as chamfer matching [6, 7,
19] and Hausdorff distance [8, 9], which utilize edge-point
templates to find correspondences using a similarity
measure. Additionally, 3D template-based algorithms using
3D CAD models [20] and depth map templates [21]
were respectively introduced in recent years due to the
availability of auxiliary depth information.

Finally, shaped-based learning methods also made
substantial impact in texture-less detection. Ferrari et
al. [22, 23] introduced a local contour feature called
k-Adjacent Segments (kAS) by linking edgel-chains (fairly
straight contour segments) and describing them using their
orientations and lengths. These kAS features consolidate
into class-specific codebooks to learn the object’s shape
model for detection using a Hough voting scheme. Other
contour-based shape detectors comprise of [24–26], where
regions are similarly detected using contours and learned
using shape context descriptors. Although these works
displayed decent performance in clutter and scale, rotation
and/or occluding results were largely unreported.

3. The BORDER Methodology

BORDER’s recognition scheme follows the 3-step
SIFT-like pipeline of detection, description and matching.
This is accompanied by a regional object encompassment
concept by first detecting interest-points via linelets,
followed by a description scheme focused about oriented

2856



rectangles. We use linelets as pivot anchor-points for
oriented rectangles to discover good locations to describe
the object, and subsequently match them based on a unique
“point-of-view” scheme.

3.1. Linelet Detection

Line-segments have shown in modern times to
effectively present a low-level stable edge feature
representation for texture-less objects [10, 13, 14]. The
Line Segment Detector (LSD) developed by Von Gioi et
al. [27], enables images to be expressed in terms of lines
with minimal need for manual parameter tweaks. However,
when purely used as a keypoint detector, it encounters
a major complication particularly with elongated lines.
These lines often materialize in low-curvature areas,
thus facilitating region-growth through their related
neighboring orientated pixels. Consequently, as line-feature
based detectors tend to exploit segment-centers as
interest-points [10–14], any occluding alterations of these
lines will render stability issues due to midpoint shifts.
Hence, to counteract this shortcoming, we propose an
adaptation of LSD to generate equal fragmented versions
of extensive line-segments termed Linelets.

The underlying principle behind linelets is to intuitively
fragment stable LSD-produced line-segments based on
a model-scene proportion concept. This is done as
opposed to sampling edges at regular intervals [11, 14], to
reduce redundancy and meaningfully tune fragment-width
according to the severity of clutter and occlusion. We begin
by applying an initial LSD detection step for both input
images to obtain the line segments of the model Lmodel and
the scene Lscene respectively. Subsequently, we initiate the
modification by defining a width threshold

ω = τRmin, (1)

where τ ≥ 1 refers to the width-limit factor with τ =
1 denoting that fragment widths are restricted to Rmin.
The variable Rmin indicates the minimum region size
for line-segment validation established through the NFA
(Number of False Alarms) computation theorized by
Desolneux et al. [28], and extensively tested in [29] for
automatic detection without tuning intervention for LSD.
This parameter is an ideal base parameter for ω since
all lines produced from LSD region-growing must contain
at least Rmin aligned pixels to be deemed as a valid
line-segment. Next, to incorporate our proportion-based
fragmentation concept, we define

τ =
Lmax

Rmin

·
n(Lmodel)

n(Lscene)
·
|Lscene|

|Lmodel|
, (2)

where Lmax is the model object’s longest line-segment,
n(Lscene) and n(Lmodel) refers to the total model-scene

line-segments detected, while |Lscene| and |Lmodel| denotes
the average lengths of all model-scene line-segments
respectively. The first term in Eq. (2), Lmax/Rmin

indicates the maximum fragments producible from the

Fig. 2: Stability comparison between line-segment and linelet
detection. (Left) LSD detection where a line has been split into
two by an overlaid object. (Right) Linelets on the other hand
demonstrates better resistance in the presence of occlusion.

model object’s longest line-segment Lmax using Rmin. We
chose Lmax due to its fragmentation priority, as the longest
uninterrupted model line-segment would likely need the
most partitions to keep it stable against scene occlusions.
The subsequent expressions incorporate our proportion
estimates where n(Lmodel)/n(Lscene) takes account of
the model-scene line-segment density to estimate clutter,

and |Lscene|/|Lmodel| approximates the line-sizing ratio to
verify occlusion breakages using the model-scene average
lengths. Lastly, we finalize ω by setting its boundary to

ωℓ = min[max(ω,Rmin),Lmax], (3)

where ωℓ represents the standardized width of each
fragment for both input images, which is used to divide
the previously materialized line-segments that have lengths
≥ 2ωℓ into equal ωℓ widths to produce linelets. Note
that if ωℓ = Lmax, it implies that linelets fall back to
line-segments. This happens when clutter and occlusion are
both presumably low, thus requiring no partitions. Finally,
each linelet ℓ is attached with properties such as its midpoint
mℓ, its orientation direction θℓ, and the aligned pixels
ai ∈Aℓ gathered from LSD region-growing. Fig. 2 shows a
stability comparison between line-segments and linelets.

3.2. The Oriented Rectangle Template

Before beginning the description process, the initial
shape of the oriented rectangle OR must be pre-determined.
This preliminary step aims to attain the ideal dimensions of
the OR to optimally encapsulate the input model object. We
surveyed numerous public databases and branded template
images into three main categories. The first type is basically
an undistracted template of the object, the second involves
a scene with the object prominently presented alongside
various insignificant distractors, and the last category
suffices a scene with an object mask. All three models can
be automatically enclosed by the combination of linelet
detection and the minimum enclosing box algorithm [30],
with the second model requiring an additional salient
region detector with automatic threshold [31] to obtain
its object mask. Alternatively, BORDER also permits for
manual OR dimensional definition. Note that all models
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Fig. 3: Automatic OR prototype detection schemes. (Top-row)
Undistracted model template. (Middle-row) Salient model
template. (Bottom-row) Scene-mask model template.

in our experiments were encapsulated by the automatic
method, as shown in Fig. 3. The OR prototype serves
as the basis for several descriptive purposes. First, it
enables length/breadth tuning for generating multi-sized
ORs for promoting diverse sub-area object encapsulation
to facilitate robustness to occlusion. Next, it also caters
for OR scale factor σ adjustments for finer scale-space
variations (e.g. σ=0.7) as opposed to image pyramids.
Finally, ORs are sub-divided into equal 4×4 blocks for
description purposes. Although other dimensions can be
set, we have found that this setting offers the best trade-off
between descriptor performance and vector size.

3.3. LineletOR Association and Revolution

Typically, it is customary for a local-patch based detector
to center its keypoint on a description region (e.g. SIFT [1]
and SURF [2]). However, given the object encapsulation
concept of BORDER, linelet midpoints mℓ are instead
placed at the corner of the OR. This is done with
the assumption that linelets would habitually be detected
around object edges. Therefore, by aligning the corner of an
OR with a linelet, it could hypothetically promote idealistic
encompassment of the object with minimal outliers. For
standardization, we align the OR according to the linelet’s
direction at its longer side. After association, the OR
proceeds for a scheduled full revolution about mℓ. This
rotation step plays an important role in BORDER as it
allows each mℓ to search for good locations to describe
the object from its own “point-of-view”. The rotation takes
place nr times, angled equally at θ=2π/nr per sample
r. Moreover, as each placement is essentially a halfspace
due to its corner-based association, we correspondingly take
account of its flipside to ensure all facets of the revolution
equivalently cover the entire spectrum. Consequently, this
brings the total rotations to 2nr. Fig. 4 demonstrates the
OR revolution about a linelet midpoint after association.

3.4. Descriptor Formulation Criterion

For a rotation sample r to be deemed describable it has
to attain an encapsulation standard, otherwise the rotation
sample is skipped without having a descriptor being built.
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Fig. 4: Revolution sequence (nr = 8) of an associated OR about
a linelet midpoint (left) and its flipside (right).

The criterion governing descriptor formulation is as follows

descℓ(r) =

[

nℓ(r)

σn(ℓmodel)
· lognB

[n(vB(r))] ≥ γ

]

, (4)

where descℓ(r) returns a boolean regarding the description
validity of the rth rotated OR, nℓ(r) is the total linelets
within the rth rotated OR of the ℓth linelet, n(ℓmodel)
denotes the model’s total linelets, σ is the current scale
of the OR, nB refers to number of OR blocks (e.g.
4× 4=16), n(vB(r)) represents the number of valid
blocks (blocks with at least one linelet), and γ is the
description validity factor. Note that the log-function in
Eq. (4) balances the weight of the block validity ratio
due to the relatively-low counts of texture-less objects.
Also, if n(vB(r))= 0, or nℓ(r)>σn(ℓmodel) the rotation
sample will be omitted, as the former constitutes an
empty OR, while the latter signifies corruption because
rotation samples should never contain more linelets than
the model. Overall, we apply this authoritative condition to
each model/scene image pair to enforce the abundance and
distribution of linelets within the ORs for strong descriptor
significance. Any rotation sample that meets the threshold
is labeled as a prospective descriptor, therefore potentially
producing multiple keypoints at the same location with
each tagged with a different r. Fig. 5 demonstrates the full
descriptor validity process.

Before the online application of the condition, the
appropriate γ has to be established. For this, all model
linelets undergo a pre-revolution step using the prototype
(section 3.2) while applying Eq. (4) to obtain the maximum
score γmax for each linelet revolution. Subsequently, we
gather all linelets’ γmax and assign the minimum value
of the collection as the description validity factor γ. This
asserts that all model linelets would produce at least one
descriptor from its maximum score after applying Eq. (4).
After establishing γ, we re-iterate the pre-revolution step
with different OR sizes by reducing one row/column at
a time (e.g. 4×3, 3×4, . . ., 2×2) from the original OR
prototype and re-dividing it to 4×4 blocks. Any reduced
OR’s encapsulation found to surpass γ will also have its
length/breadth deployed as part of the multi-sized descriptor
scheme within each scale space iteration. This is another
key characteristic of BORDER in addition to linelets to
greatly enhance detection rates during occlusion.
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1	 2	 3	 4	 5	 6	 7	 8	

-1	 -2	 -3	 -4	 -5	 -6	 -7	 -8	

Fig. 5: Rotation sequence of the oriented rectangle (top) and its flipside (bottom) with nr =8. The rectangle rotates at an incremental
2π/nr per sample. In this case, samples 2 and -4 (flipside) will be chosen for description (highlighted in green).

3.5. BORDER Description

For each approved rotational position descℓ(r)= 1,
empty blocks are assigned with zeros in its particular
histogram block vector, whereas valid blocks proceed
with the description. For each valid block, we start by
consolidating the encapsulated linelets’ aligned pixels Aℓ

for sampling. This is done as opposed to using every pixel
within the block to keep updates to a minimal. Furthermore,
as pixels within each Aℓ have closely related orientations
from LSD region-growing, we are able to sample Aℓ

using a stepsize approach without sacrificing performance.
Let B be the histogram block scheduled for update and
AB = [Aℓ ∈ B] be the set of aligned pixels within B, then
we define the number of update samples ns for B as

ns = σγRminn(ℓB), (5)

where σ is the current scale of the OR, 0 ≤ γ ≤ 1 is
the description validity factor (section 3.4) used as the
object-complexity indicator to normalize the sample size
based on the model object’s information richness, n(ℓB) is
the number of linelets in the current B, and Rmin refers to
the minimum region size validation parameter (section 3.1)
used as a standardized Aℓ size for all linelets. Subsequently,
the block’s stepsize can be represented by

stepsize = max
(

⌊

n(AB)/ns

⌋

, 1
)

, (6)

where n(AB) refers to the total aligned pixels within the
current B. Finally, each sampling pixel is retrieved using

si = AB(stepsize · i), 0 ≤ i ≤ ns, (7)

where si refers to ith sampled pixel. In general, this stepsize
approach normalizes the sampling rate for each linelet’s Aℓ

according to its size within B to minimize updates.
For the descriptors, the key factor besides delivering

exclusiveness is rotation invariance. Out of the existing
texture-less description methods [11–14], BOLD’s pairwise
geometric primitives has proved to be the most robust as
presented in their paper [10]. Therefore, to acclimatize
our block samples into similar robust angle primitives, we
simulate each sample si and its origin linelet keypoint ℓj as
point pairs while extending each si into unit vectors using
its aligned direction as shown in Fig. 6. This creates two
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Fig. 6: Three samples and a linelet forming pairs and angle
primitives. Each αi updates its respective block histogram vector.
Blocks are concatenated according to its assigned block number.

angles, but we only use the primitive at si as the angle at ℓj
has already been encoded by the OR’s rotation index and its
block sequencing. Contrary to BOLD, information gathered
during linelet detection allows us to simplify the derivation
of our single-sided angle primitive αi to

αi =



















arccos

(

ŝi · tij
‖tij‖

)

, ĝi · tij < 0

2π − arccos

(

ŝi · tij
‖tij‖

)

, otherwise

, (8)

where · is the dot product, tij refers to the imaginary
vector between si and its origin linelet keypoint ℓj ,
while the unit vectors ŝi and ĝi represents the aligned
direction and gradient orientation of si respectively. The
effectiveness of this primitive can be attributed to its
contrast polarity property, which is incoporated by verifying
the pointing-directions of ĝi and tij with respect to its
ŝi axis. For instance, if both ĝi and tij point to different
halfspaces with ŝi as their separating axis (e.g. ŝ1 in
Fig. 6), then we assign the smaller angle between ŝi and
tij to αi, otherwise the larger inverse angle is allocated
instead (e.g. ŝ0 and ŝ2 in Fig. 6). By doing so, it enables
additional robustness by embedding the direction of si in
the descriptors. All αi gathered from each sample-origin
pair form votes with weights corresponding to the gradient
magnitude of its respective samples. We assign each
histogram block with 8 orientation bins (θ = 2π/8), while
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Fig. 7: BORDER deployed with multi-sized ORs matched with
similar r-tag rule. The first match (purple) is at r=3, the second
match (blue) at r=1, and the third match (yellow) at r=−6. Each
linelet’s direction is indicated by the green arrow.

employing bilateral accumulation to minimize effects of
quantization. Finally, all block histograms are concatenated
to form a 16× 8=128 dimensional vector with the first
block sequence being nearest to the origin as indicated
in Fig. 6. As for normalization, tests showed that L2
norm applied individually block-wise rather than the entire
concatenated descriptor offered the best results. This is
primary because ORs span over large regions, therefore
becoming susceptible to vastly contrasting magnitudes.

3.6. Matching BORDER Descriptors

BORDER asserts that each descriptor can only be
matched with another that has been produced at a similar
“point-of-view”. This means that descriptors are only
compared when they are created at the same rotation index
r, as illustrated in Fig. 7. We introduce this rule due to the
tendency of texture-less objects to be symmetrical, hence
increasing its matching ambiguity. To accommodate this
condition, we distribute the descriptor vectors into 2nr

spaces according to its tagged r in the description phase.
Therefore, no additional memory or work is sacrificed for
the preparation as opposed to accumulating into a single
large space. As for the actual matching phase, only vector
spaces that correspond to the same r-tag between the train
and query descriptors gets matched. BORDER utilizes the
randomized kd-tree forest from FLANN [15] for Euclidean
distance matching followed by a geometric verification
process for object localization within the scene.

4. Experiments

This section compares BORDER against other
contemporary detectors in both texture-less and textured
genres. To ensure comprehensiveness, we employ modern
texture-less object detectors such as BOLD [10] and
LINE2D [3], as well as popular textured-based keypoint
detectors like SIFT [1], SURF [2] and ORB [32]. A total
of three datasets have been chosen for our experiments,
the D-Textureless dataset [10] to challenge BOLD’s high
detection rates, the CMU Kitchen Occlusion dataset
(CMU-KO8) [18] for its highly cluttered and occlusive
scenes, and finally a textured-based assessment using The
Stanford Mobile Visual Search (SMVS) Data Set [33].
A preview of the datasets can be seen from the feature
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Fig. 8: Experiment for optimal rotation samples nr .

(a) Query Resized Scale = 1 (b) Query Resized Scale = 0.85

(c) Query Resized Scale = 0.75 (d) Query Resized Scale = 0.7

Fig. 9: Example of the scale space experiment. (a), (b) and (c)
shows resized versions of the query images with object detection
remaining valid. (d) demonstrates that at scale more than 0.25,
object detection starts to degrade.

matching results of BORDER in Fig. 12, 13, and 14
respectively.

4.1. OR Rotations and Scale Space Intervals

Before the comparisons, internal tests were conducted on
BORDER to validate its undetermined parameters.

OR rotations test This first test involves nr, the
number of rotation samples (section 3.3) needed for each
linelet-OR association. This experiment iterates all the
mentioned datasets while increasing nr in multiples of
two to record its detection versus rotation samples trend.
From the graph in Fig. 8, it can be observed that greater
samples of nr offer better detection rates at the expense of
increased complexity. However, as rotation numbers climb,
saturation starts to occur, thus rendering high samples
impractical. Therefore, we deduce that nr =8 offers the
best compromise between detection and complexity rates.

Scale space test Mentioned in section 3.2, BORDER
exploits the OR’s scale factor σ for scale invariance.
Therefore, it is paramount to uncover the scale tolerance of
the OR in order to minimize iterations. For this experiment,
we repeat BORDER using the same object for both inputs
with the query image resized at 0.05 intervals, while
keeping both ORs’ σ = 1. We apply this method to all the
dataset models and conclude that keeping σ at intervals of
0.25 (e.g. σ=1, 0.75, 0.5, 0.25) provides the best tolerable
scale space coverage. Fig. 9 demonstrates the detection
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Fig. 10: Texture-less object database experimental results. (a) D-Textureless Tools dataset, (b) and (c) CMU-KO8 Kitchen Occlusion
single-view and multi-view datasets respectively.

degradation as the object is resized. Note that BORDER
only scales σ at the query image during actual execution.

4.2. Comparative Results

With BORDER’s parameters all tested and automated,
we proceed with the experimentations. For the competing
algorithms such as LINE2D, SIFT, SURF and ORB, they
were all implemented in C++ set with their proposed
parameters. BOLD on the other hand was realized by
the library from their project site [10]. Apart from
ORB, all interest-point detectors including BORDER
uses the Euclidean distance-based FLANN-randomized
kd-tree for descriptor matching. ORB instead employs
the FLANN-LSH matcher as recommended in their paper
[32]. To inscribe further fairness in the findings, all
keypoint-point based detectors follow the Hough-voting
scheme [1] for incremental accumulation of the curves. The
processors used for the tests runs at 1.7GHz dual-core from
the Intel Core i7 Haswell line, with RAM up to 8GBs.

D-Textureless dataset experiment The first experiment
engages the D-Textureless dataset by the creators of
BOLD. It contains 9 templates of commonly used tools,
accompanied by 55 scenes. Besides being texture-less,
this dataset challenges algorithms on properties such as
translation, rotation, and up to about 50% scale and
occlusion. We line up all participating algorithms including
LINE2D, as D-Textureless provides its training data, to
obtain the ROC plot as shown in Fig. 10a. From the results,
we observe that the texture-less based detectors clearly
outperform the others, with BORDER able to slightly edge
out BOLD to claim top spot. Although the result between
the two may be marginal, it is very significant upon analysis.
As prior to the experiment, we found that BOLD had
already achieved an impressive 86% true positive rate at its
default settings on D-Textureless. Therefore, to be able to
surpass BOLD in this dataset, truly exemplifies BORDER’s
robustness in detecting such texture-less objects. Deeper
investigations uncover that BORDER performs better in
cases shown in Fig. 12, where objects have their extensive
lines occluded. This can be accredited to linelets for its
line breakage resistance, together with BORDER’s isolative
description methods.
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Fig. 11: Experiment results from the textured SMVS dataset.

CMU-KO8 dataset experiment The next experiment
involves the extremely cluttered and occluded CMU
Kitchen Occlusion dataset (CMU-KO8). Assembled by
Hsiao and Herbert, this dataset was built to evaluate their
occlusion reasoning model, which was used in conjunction
with LINE2D for enhancing performance under highly
occlusive scenes. It models 8 texture-less kitchenwares with
object masks provided, together with 100 scene images
for each object in both single (8x100) and multi-view
situations (8x100). The key challenge this dataset presents
is the various challenging levels of clutter and occlusion,
set in a texture-less domain. Hence, very little emphasis
was placed in scale, rotation and even translation. We
consolidated the results of BORDER, BOLD, LINE2D and
LINE2D+Occlusion reasoning (rLINE2D, rLINE2D+OPP
and rLINE2D+OCLP) in a recall vs. FPPI (False Positives
Per Image) scheme as portrayed in [18] to compare the
average detection results of both the single and multi-view
cases. Textured-based detectors are not compared because
of the lack of keypoint registration for most of the model
objects. Fig. 10b and 10c shows the performance of
BORDER over the others in both the single and multi-view
databases respectively. In this case, there is a clearer
distinction between the detection rates of BORDER and
BOLD, with the former having about a 7% lead over
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(a) (b) (c) (d)

Fig. 12: Recognition results from D-Textureless where BORDER (a), (c) successfully detects, whereas BOLD (b), (d) falls short.

Fig. 13: Some BORDER impressive feature matching results from the CMU-KO8 dataset.

(a) BORDER’s positive feature matching results for textured objects. (b) Failed to detect under high affine change.

Fig. 14: BORDER’s SMVS dataset textured sample results. Favorable results from these textured objects can be seen from (a), (b)
demonstrates a futile attempt to detect under a high angled viewpoint.

the latter in both datasets. LINE2D’s performance was
quite mediocre, but addition of the occlusion reasoning
models propelled it to a much more competitive level.
Overall, BORDER achieved the best detection rates among
the texture-less detectors, as well as obtaining almost
similar results against the LINE2D+occlusion reasoning
models without any reasoning intervention. Therefore, this
establishes BORDER’s recognition robustness in heavy
occlusion as well. Fig. 13 exhibits some remarkable feature
matching results of BORDER on CMU-KO8. Additionally,
the complete BORDER’s feature matching results of
D-Textureless and CMU-KO8 can be found in our database1.

SMVS dataset experiment Thus far, with the
preeminence of BORDER in both the D-Textureless and
the CMU-KO8 datasets, we can safely acknowledge its
robustness in detecting texture-less objects. Consequently,
to have a complete evaluation in terms of general object
detection, we conduct an experiment on a textured database
from the SMVS dataset. This dataset contains 8 categories
such as book covers, business cards, cd covers, dvd covers,
museum paintings, print, landmarks and video frames.
Among the 8 we have left out the last two, as they
are not object-based. Each remaining category comprises
of 100 models for training, and 400 query images for
testing respectively. We choose this dataset primarily due
to its diversity as it examines algorithms on different
textures such as texts, artworks as well as posterized

1https://www.dropbox.com/sh/87trs7j798ottbq/
AADY4bgAor9G5IOAzHcXCTQ0a?dl=0

images. Fig. 11 reports the average ROC results of the
detectors used in this dataset, while Fig. 14 shows some
BORDER feature matching results. Note that LINE2D
is left out due to insufficient templates for its training.
As anticipated from the results, SIFT/SURF completely
dominates, while BORDER on the other hand outperforms
BOLD. One aspect that texture-less detectors falls short is in
high perspective viewpoints situations. This is due to their
large region-based detection schemes, which suffers severe
degradation in affine changes as seen in Fig. 14b.

Although achieving state-of-the-art detection rates,
BORDER’s high rotations/samples per linelet ultimately
costs its runtime to be the higher than BOLD as shown
in Fig. 11. It is however quicker than SIFT, and would be
multitudes faster after parallel/GPU intervention.

5. Conclusion

We have presented a detector termed BORDER, which
combines a regional object encompassment concept with
descriptor-based pipelines to recognize texture-less objects
in the presence of high clutter and occlusion. The algorithm
stabilizes interest-points in the form of linelets and delivers
effective descriptor formation with its oriented-rectangle
revolution scheme. BORDER is also invariant to scale and
rotation which is vital in today’s real-world applications.
Results from three datasets revealed BORDER’s superior
recognition rates among the state-of-the-art texture-less
detectors, while displaying high competence in textured
instances as well.
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