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Abstract

In this paper, we propose a new curvature penalized min-

imal path model for image segmentation via closed con-

tour detection based on the weighted Euler elastica curves,

firstly introduced to the field of computer vision in [22]. Our

image segmentation method extracts a collection of curva-

ture penalized minimal geodesics, concatenated to form a

closed contour, by connecting a set of user-specified points.

Globally optimal minimal paths can be computed by solving

an Eikonal equation. This first order PDE is traditionally

regarded as unable to penalize curvature, which is related

to the path acceleration in active contour models. We in-

troduce here a new approach that enables finding a global

minimum of the geodesic energy including a curvature term.

We achieve this through the use of a novel Finsler met-

ric adding to the image domain the orientation as an extra

space dimension. This metric is non-Riemannian and asym-

metric, defined on an orientation lifted space, incorporating

the curvature penalty in the geodesic energy. Experiments

show that the proposed Finsler minimal path model indeed

outperforms state-of-the-art minimal path models in both

synthetic and real images.

1. Introduction

Active contours models have been considerably studied

and used for object segmentation and feature extraction dur-

ing almost three decades, since the pioneering work of the

snakes model proposed by Kass et al. [15]. This approach

models contours as closed curves locally minimizing an ob-

jective functional consisting of an internal and an external

force. The internal force terms depend on the first and sec-

ond order derivatives of the curves (snakes), and respec-

tively account for a prior of small length and of low cur-

vature of the contours. The external force is derived from a

Potential, depending on image data such as gradient magni-

tudes [15], and designed to attracting the curves or snakes

to image features of interest such as object boundaries.

The drawbacks of the snakes model [15] are its sensi-

tivity to initialization, the difficulty of handling topological

changes, and of minimizing the strongly non-convex path

energy [13]. Regarding initialization, the snakes model re-

quires an initial guess close to the desired images features,

and preferably enclosing them because energy minimiza-

tion tends to shorten the snakes. The introduction of an ex-

panding balloon force allows the initial curve to be inside

the objective region [11]. The issue of topology changes

led, on the other hand, to the development of active contour

methods which represent object boundaries as the zero level

set of the solution to a PDE [9, 10, 17, 23, 30].

The difficulty of minimizing the non-convex snakes en-

ergy [15] leads to important practical problems, since the

curve optimization procedure is often stuck at local min-

ima of the energy functional, making the results sensitive

to curve initialization and image noise. In order to find the

global minimum of the active contours energy, Cohen and

Kimmel proposed a geodesic or minimal path model [13]

by removing the penalty associated to the second derivative

of the curve from the snakes energy [15]. In contrast with

snakes energy, this first order geodesic model [13] does not

penalize curvature, despite its relevance for the applications.

Thanks to this simplification, a fast, reliable and globally

optimal numerical method allows to find the energy min-

imizing curve with prescribed endpoints; namely the fast

marching method [27], based on the formalism of viscos-
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ity solutions to Eikonal PDE. These mathematical and algo-

rithmic guarantees have important practical consequences,

which allowed to deeply apply the minimal path model and

its extensions to image analysis and medical imaging. In

the Cohen-Kimmel model [13] tubular structures or object

boundaries are extracted under the form of minimal paths

with respect to an isotropic Riemannian metric over the im-

age domain [3]. In [6, 8, 14], the isotropic metrics are re-

placed with more general anisotropic Riemannian metrics

taking into account the orientation of the curves.

The above mentioned Eikonal PDE based minimal path

models only consider the first derivative of the curve, failing

to use the high order properties such as curvature to pre-

serve the rigidity of the curves. Bekkers et al. [4, 5] con-

sider an orientation lifted sub-Riemannian geodesic model,

first introduced by Petitot [25]. The numerical solver pro-

posed in [4, 5] is based on a PDE approach with upwind

discretization scheme thus requiring expensive computation

time. Additionally, minimal geodesics for Petitot’s model

occasionally feature cusps [5], which are annoying artifacts

for the application of interest, and this kind of artifact does

not appear in our approach. Reported computation times for

this approach were initially completely impractical [4, 5],

but one can obtain a hundred-fold reduction thanks to the

use of state-of-the-art fast marching method [21].

Minimal path based image segmentation methods [2, 3,

18, 19], as well as perceptual grouping methods [8, 12] rep-

resent boundaries as concatenations of geodesics. In [2], the

authors took geodesics as active contours which can com-

bine edge information for region-based active contours en-

ergy. In [18], the authors took a set of pre-computed min-

imal paths as candidate contours, and then find a combi-

nation minimizing the designed energy consisting of sim-

plicity, edge and region information based terms. A com-

binatorial search then selects, among the admissible paths,

an energy minimizing combination forming a closed con-

tour. [2, 18] use the saddle points of the geodesic distance

function to get a closed contour as the boundaries of an ob-

ject. However, those models did not consider the curvature

properties of the minimal paths.

Our contribution is twofold. Firstly, we propose a novel

curvature penalized minimal path model for image segmen-

tation through closed contour detection. We establish the

connection between the Euler elastica, and minimal paths

with respect to an orientation lifted asymmetric Finsler met-

ric. We discuss options for geodesic distance and path com-

putation, and settle for an adaptation of the fast marching

method [21]. As a second contribution, we present a closed

contour detection for image segmentation, in the form of

piecewise smooth geodesics, connecting an user provided

set of points distributed on an object boundary.

In Section 2 we briefly introduce the existing minimal

path models, the concept of Finsler metric, and algorithms

for distance computation and path extraction. The relation-

ship between the Euler Elastica and the proposed Finsler

metric is presented in Section 3 and the closed contour de-

tection method is in Section 4.

2. Background and Motivation

2.1. General Minimal Path Model

The minimal path problem [26] is posed on a bounded

domain Ω equipped with a metric F(x, ~u) depending on

location x ∈ Ω and orientation ~u. This application F
defines at each point x ∈ Ω a norm Fx(~u) = F(x, ~u).
These norms must be positive Fx(~u) > 0 whenever ~u 6= 0,

1-homogeneous, and obey the triangular inequality. How-

ever we allow them to be asymmetric: Fx(~u) 6= Fx(−~u) in

general. Let Ap,x be the set of all Lipschitz regular paths

γ : [0, 1] → Ω, s.t. γ(0) = p and γ(1) = x, one measures

path length through a metric F :

ℓ(γ) =

∫ 1

0

Fγ(t)

(
γ′(t)

)
dt, (1)

where γ′(t) = d
dt
γ(t). The minimal action map U(x), or

geodesic distance from the source point p, is the minimal

length (1) among all path joining starting point p to x ∈ Ω:

U(x) := min{ℓ(γ); γ ∈ Ap,x}. (2)

The function U is the unique viscosity solution to an

Eikonal PDE:
{
F∗

x

(
∇U(x)

)
= 1, for all x ∈ Ω,

U(p) = 0,
(3)

where the dual metric F∗ is defined as

F∗
x(~u) = sup

~v 6=0

〈~u,~v〉

Fx(~v)
. (4)

The metrics F considered in this paper combine a symmet-

ric part, defined in terms of a positive tensor field M, and

an asymmetric part involving a vector field ~ω:

Fx(~u) =
√

〈~u,M(x) ~u〉 − 〈~ω(x), ~u〉. (5)

The asymmetric part should obey the following smallness

condition to ensure that the Finsler metric is positive every-

where

s.t. 〈~ω(x),M−1(x)~ω(x)〉 < 1. (6)

The geodesic C, joining x from p, can be recovered by solv-

ing the following ODE involving U and the dual metric F∗:

C′(t) = −∇F∗
C(t)

(
∇U
(
C(t)

))
. (7)

Equation (5) defines an anisotropic Finsler metric in gen-

eral, an anisotropic Riemannian metric if the vector field ~ω
is identically zero, and an isotropic metric if in addition the

tensor field M is everywhere diagonal.
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(a) (b) (c) (d)

Figure 1. Results from different minimal path models. (a) and (b)

are the results from the Cohen-Kimmel model and the IL model

respectively. (c) and (d) are the results from the proposed model.

2.2. CohenKimmel Model and Orientation Lifting

The classical Cohen-Kimmel model in [13] is based on

the energy functional:

ℓ(γ) =

∫ 1

0

(
ǫ+ P

(
γ(t)

))
‖γ′(t)‖ dt. (8)

Where P is the Potential function and ǫ > 0 is a constant.

The energy in (8) can be obtained from the more general for-

mulation (1) and (5) by setting the tensor field M to be pro-

portional to the identity matrix Id: M(x) =
(
ǫ+P(x)

)2
Id,

and setting ~ω = 0.

Orientation Lifted Metric Extension: The image domain

Ω can be extended by product with an abstract parameter

space [16]: Ω̄ = Ω × S
1, typically accounting for the ori-

entation θ ∈ S
1 of the object boundary or tubular structure

presented in the processed image [24]. An orientation lifted

path γ = (Γ, θ) can be given the isotropic orientation-lifted

Riemannian metric:

F IL
γ (γ′) =

1

ΦIL(Γ, θ)

√
‖Γ′‖2 + ρ |θ′|2, (9)

corresponding to (5) with ~ω = 0. ΦIL is a data driven veloc-

ity function. ρ > 0 is a constant. Orientation lifting often

improves the results in [13], but suffers from the fact that

nothing in (9) constrains the path direction Γ′ to align with

the orientation θ, a point which is addressed in our paper.

2.3. Computing the Action Map

In order to estimate the minimal action map U , presented

in (2) and (3), a discretization grid Z of the image domain

Ω is introduced - or of the extended domain Ω̄ in the case

of an orientation lifted metric. For each point x ∈ Ω or Ω̄,

a small mesh S(x) of a neighbourhood of x with vertices

in Z is constructed. For example S(x) is the square formed

by the 4 neighbours of x in the classical fast marching on

a regular orthogonal grid. In contrast with the fast march-

ing method which solves the discrete approximation of the

Eikonal PDE, an approximation of the minimal action map

U , with p as the initial source point, is calculated by solving

the following fixed point system:

{
U(x) = ΛU(x), for all x ∈ Z,

U(p) = 0,
(10)

where the involved Hopf-Lax update operator is defined by:

ΛU(x) := min
y∈∂S(x)

{
Fx(x− y) + IS(x) U(y)

}
, (11)

where IS(x) denotes the piecewise linear interpolation op-

erator on the mesh S(x), and y lies on the boundary of

S(x). The equality U(x) = ΛU(x), replacing in (10) the

Eikonal PDE: F⋆
x(∇U(x)) = 1 of (3), is a discretization of

Bellman’s optimality principle. It is similar in spirit to the

Tsitsiklis approach [29]. It reflects the fact that the minimal

geodesic Cp,x, from p to x, has to cross the mesh bound-

ary ∂S(x) at least once at some point y; thus it is the con-

catenation of a geodesic Cp,y from p to y, which length is

approximated by piecewise linear interpolation, and a very

short geodesic Cy,x from y to x, approximated by a segment

of curve length Fx(x− y).
The N -dimensional fixed point system (10), with N =

#Z, can be solved in a single pass using fast marching

method [27], provided the stencils or mesh S(x) at each

point x ∈ Ω satisfies some geometric acuteness property

depending on the local metric Fx. An adaptive construction

of such stencils S was introduced in [20] for anisotropic 3D

Riemannian metric and in [21] for anisotropic 2D Finsler

metric, which led to breakthrough improvements in terms

of computation time and accuracy for strongly anisotropic

geodesic energy metrics.

When the above mentioned geometric properties do not

hold, the fast marching method is in principle not appli-

cable, and slower multiple pass methods must be used in-

stead such as the Adaptive Gauss Siedel Iteration (AGSI)

of [7]. The present paper involves a 3D Finsler metric (14),

for which we constructed stencils by adapting the 2D con-

struction of [21]. Although these stencils lack the geomet-

ric acuteness condition, we found that the fast marching

method still provided good approximations of the paths,

while vastly improving computation times, see the next sec-

tion. Future work will be devoted to improving the AGSI

algorithm and/or our adaptive stencil construction for the

fast marching algorithm to simultaneously benefit from a

convergence guarantee and reasonable computation times.

2.4. Motivation

We show the geodesics for different given points from

the Cohen-Kimmel model [13] in Fig. 1 (a), and isotropic

orientation lifted model (IL) [24] in Fig. 1 (b). One can

see that the mentioned two models suffer from the short-

cuts problem because those models prefer to choose short-

est paths, with respect to an image dependent metric pro-
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moting paths along image features. In contrast, the curva-

ture penalty embedded in the proposed model favors smooth

paths along image features as shown in Fig. 1 (c). As an ad-

ditional benefit, the asymmetry of the proposed Finsler met-

ric implies that the geodesic (red) from red dot to green dot

is distinct from the one (green) from green dot to red dot:

they correspond to complementary parts of the underlying

object contour, see Fig. 1 (c) and (d).

3. Finsler Minimal Path Model

3.1. Euler Elastica

The Euler elastica curves were first used in computer vi-

sion by Nitzberg and Mumford [22]. They minimize the

following bending energy:

L0(Γ) =

∫ L

0

(
1 + ακ2(s)

)
ds, (12)

where α > 0 is a constant. L denoting the classical curve

length (free variable), s is the arc-length, and Γ : [0, 1] → Ω
is a regular curve. κ is the curvature of Γ.

The goal of this section is to cast the elastica bending

energy (12) in the form of curve length with respect to a

Finsler metric. Hence we transform the Elastica problem

into finding a geodesic in a particular space. For this pur-

pose, we denote by S
1 = [0, 2π) the angle space, with peri-

odic boundary conditions, and let ~vθ = (cos θ, sin θ) be the

unit vector corresponding to θ ∈ S
1.

Let Γ(t) : [0, 1] → Ω be a smooth curve with non-

vanishing velocity, and let γ(t) =
(
Γ(t), θ(t)

)
be its canon-

ical orientation lifting, where θ(t) is defined such that

~vθ(t) = Γ′(t)/‖Γ′(t)‖. Then it is well known that

(
Γ′(t)

‖Γ′(t)‖

)′

= κ(t)‖Γ′(t)‖

(
Γ′(t)

‖Γ′(t)‖

)⊥

,

and
(

Γ′(t)

‖Γ′(t)‖

)′

=
d

dt
~vθ(t) = θ′(t)

(
− sin θ(t), cos θ(t)

)

= κ(t)‖Γ′(t)‖

(
Γ′(t)

‖Γ′(t)‖

)⊥

,

which yields to

θ′(t) = κ(t)‖Γ′(t)‖.

Therefore, defining Euclidean arc-length by ds =
‖Γ′(t)‖dt, one has

∫ L

0

(
1 + ακ2(s)

)
ds =

∫ 1

0

(
1 +

α|θ′(t)|2

‖Γ′(t)‖2

)
‖Γ′(t)‖ dt

=

∫ 1

0

F∞
γ(t)

(
γ′(t)

)
dt,

 

 

λ=1

λ=10

λ=20

λ=30

λ=100

λ=200

λ=300

Figure 3. Approximated Euler elasticas for α = 500 and different

values of λ. Arrows indicate the initial and end tangents. Cyan

and blue dots indicate the initial and end positions.

where we define the Finsler metric F∞ as

F∞
γ (γ′) :=

{
‖Γ′‖+ α |θ′|2

‖Γ′‖ , if Γ′ ∝ ~vθ,

+∞, otherwise.
(13)

for any orientation lifted point γ = (Γ, θ) ∈ Ω × S
1, any

vector γ′ = (Γ′, θ′) ∈ R
2 × R in the tangent space, and

where ∝ denotes positive collinearity. Note that any other

lifting γ̃(t) = (Γ(t), θ̃(t)) of Γ(t) would by construction of

(13) have infinity energy.

3.2. λPenalized Anisotropic Finsler Metric Fλ

The Finsler metric F∞ defined in (13) is too singular to

apply the fast marching algorithm directly. Hence we in-

troduce a family of metrics which depend on a penalization

parameter λ ≫ 1 as follows:

Fλ
γ (γ

′) :=
√
λ2‖Γ′‖2 + 2αλ|θ′|2− (λ−1)〈~vθ,Γ

′〉, (14)

for any γ = (Γ, θ) ∈ Ω×S
1 and any γ′ = (Γ′, θ′) ∈ R

2×R,

and where ~vθ = (cos θ, sin θ).
A key object for visualizing and studying the geom-

etry distortion induced by a metric is Tissot’s indicatrix:

the collection of unit balls in the tangent space. Here for

γ = (Γ, θ) ∈ Ω× S
1 and λ ∈ [1,∞]

Bλ
γ := {γ′ = (Γ′, θ′) ∈ R

2 × R; Fλ
γ (γ

′) ≤ 1}. (15)

Let Γ′
‖ := 〈Γ′, ~vθ〉 and Γ′

⊥ = 〈Γ′, ~v⊥θ 〉. Then γ′ =

(Γ′, θ′) ∈ B∞
γ is characterized by Γ′

⊥ = 0, inequality

Γ′
‖ > 0 and

Γ′
‖ +

α|θ′| 2

Γ′
‖

≤ 1 ⇔

(
Γ′
‖ −

1

2

)2

+ α|θ′|2 ≤
1

4
.
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(a) (b)

Figure 2. Visualization for F∞ and Fλ with α = 1 by Tissot’s indicatrix. (a): Tissot’s indicatrix for the metric F∞ with α = 1 are flat

2D disks embedded in 3D space, aligned with the direction ~vθ (several directions θ shown). (b): Tissot’s indicatrix for Fλ are ellipsoids,

which are flatten and approximate a limit disk as λ → ∞.

Thus B∞
γ is a flat 2D ellipse embedded in the 3D tangent

space, and containing the origin on its boundary. Particu-

larly, when α = 1, B∞
γ turns to a flat 2D disk of radius 1/2

as shown in Fig. 2 (a). On the other hand when λ < ∞,

a short computation shows that Bλ
γ is characterized by a

quadratic equation

λ

2
Γ′ 2
⊥ + aλ

(
Γ′
‖ −

bλ
2

)2

+ α|θ′|2 ≤
cλ
4
, (16)

where aλ, bλ, cλ are all 1 + O(1/λ). Hence Bλ
γ is an el-

lipsoid, for instance see Fig. 2 (b) with α = 1, almost flat

in the direction of ~v⊥θ due to the large factor λ/2, which

converges to B∞
γ in the Haussdorf distance as λ → ∞.

Tissot’s indicatrix is also the control set in the opti-

mal control interpretation of the Eikonal equation (3). The

Haussdorf convergence of the control sets shows that the ac-

tion map and minimal paths for the metric Fλ converge to-

wards those of F∞ as λ → ∞. When λ is sufficiently large,

the spatial and angular resolutions are sufficiently small, the

fixed point system (10) is properly solved, and the minimal

paths are properly extracted (7), one obtains numerical con-

vergence of the extracted curves towards the Euler elasticas,

as illustrated on Fig. 3.

The metric Fλ has precisely the required form (5) with

tensor field M = diag(λ2, λ2, 2λ) and vector field ~ω =
(λ − 1)(~vθ, 0) ∈ R

2 × R. Note that the definiteness con-

straint (6) is satisfied: 〈~ω,M−1~ω〉 = (1− λ−1)2 < 1.

The anisotropy ratio µ(F) characterizes the distortion

between different orientations induced by a metric F on a

domain Ω̄. Letting x ∈ Ω̄, the anisotropic ratio µ(Fλ) of

the proposed Finsler metric Fλ (14) is defined by

µ(Fλ) := sup
x∈Ω̄

{
max

|~u|=|~v|=1

{Fλ
x (~u)

Fλ
x (~v)

}}
. (17)

As an example, for the Finsler metric Fλ (14), with λ ≥ 2

Table 1. CPU time (in seconds) for α = 500 and different values

of λ with fast marching algorithm on a 300
2 × 108 grid.

λ 1 10 20 30 100 200 300

time 15.5 25.8 27.0 28.4 31.7 33.6 34.7

Table 2. Average number of Hopf-Lax updates required for each

grid point by AGSI for different values of λ on a 120
2 × 43 grid.

λ: 1 4 6 64 256 1024

3 36 67 90 259 349

and α = 1, one maximizes (17) by choosing ~u = −~vθ and

~v = ~vθ, so that µ(Fλ) = 2λ− 1.

Numerically, anisotropy is related to the problem stiff-

ness, hence to its difficulty. We observe on Table 1 a log-

arithmic dependence of computational (CPU) time with re-

spect to anisotropy on a synthetic image with size of 3002×
108 for α = 500 and different values of λ. These obser-

vations agree with the worst case analysis of method [21],

which yields the upper bound O(N ln3 µ + N lnN), de-

pending poly-logarithmically on the anisotropy ratio µ (17)

and quasi-linearly on the number N of discretization points

in Ω̄. In contrast, methods such as [28] displaying a polyno-

mial complexity O(Nµd−1) in the anisotropy ratio would

be unworkable. The iterative AGSI method, on the other

hand, requires hundreds of operator (11) evaluations per

grid point to converge for large anisotropies λ ≫ 1, see

Table 2, which also leads to prohibitive computation times,

thus impractical.

In Fig. 3, we show different geodesics (approximated

Euler elasticas) with different values of λ. The arrows indi-

cate the initial and end directions. Cyan and blue dots indi-

cate the initial position and end position respectively. In this

experiment, we set the angle resolution to be θs = 2π/108
and image size is 300 × 300. When λ = 1, the metric Fλ

is constant over the domain, since the coefficient in front of
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〈~vθ,Γ
′〉 (see (14) ) vanishes. Hence the minimal geodesics

are straight lines, see Fig. 3, that do not align with the pre-

scribed endpoints tangents. As λ increases, curvature pe-

nalization forces the extracted paths to gradually align with

the prescribed endpoints tangents and take the elastic shape.

3.3. Weighted λPenalized Finsler Metric J

In Section 3.2, we have introduced the anisotropic

λ-Penalized Finsler metric Fλ to efficiently approximate

the Euler elastica [22]. In order to apply this minimal path

model to image analysis, like object segmentation, we in-

corporate the image data to the proposed Finsler metric Fλ,

defining a metric J : Ω× S
1 → R

+ by

Jγ(γ
′) =

√
λ2‖Γ′‖2

Φ2
b

+
2λ|θ′|2

Φbβ2
b

− (λ− 1)
〈~vθ,Γ

′〉

Φb

, (18)

where Φb and βb are image data driven speed functions. The

computation of Φb and βb is described in Section 4.1.

The Finsler metric J is used to approximate the

weighted Euler elastica energy:

L(γ) =

∫ L

0

(
1

Φb

(
γ(s)

) + κ2(s)

β2
b

(
γ(s)

)
)

ds, (19)

where s is the arc-length and L is the classical curve length.

The minimal action map associated to metric J is denoted

by Wp, and estimated through the fast marching algorithm

as explained in Section 2.3.

4. Image Segmentation via Contour Detection

In this section, we introduce an image segmentation

method based on the Finsler minimal path model proposed

in Section 3.3.

4.1. Gradient Magnitude Based Φb and βb

Consider a color image, which we regard as a vector val-

ued map I : Ω → R
3, I(x) = [I1(x), I2(x), I3(x)] for each

x ∈ Ω. Let Iσ := Gσ ∗ I = [Iσ1 , I
σ
2 , I

σ
3 ], where Gσ is a

Gaussian function of fixed variance σ. The gradient ∇Iσ is

a 2× 3 Jacobian matrix of rows ∇Iσk , 1 ≤ i ≤ 3.

For object boundaries extraction, we consider velocity

functions Φb and βb independent from the angle θ ∈ S
1,

and determined by the image gradient:

Φb(x, ·) = 1 + η

(
‖∇Iσ(x)‖F

max{‖∇Iσ(z)‖F ; z ∈ Ω}

)p

, (20)

βb(x, ·) =
√

α0Φb(x, ·), or βb = constant, (21)

where α0, η and p are positive constants. ‖·‖F is the Frobe-

nius norm: ‖∇Iσ(x)‖F =
√∑3

k=1 ‖∇Iσk (x)‖
2, ∀x ∈

Ω. We use a definition of Φb that do not depend on the ori-

entation since in the examples of the next sections, we show

(a)

q 1

q 2

(b)

q 1

q 2

q 3

q 4

(c)

q 1

q 2

q 3

q 4

(d)

Figure 4. Steps of our contour detection algorithm (see text).

that the curvature term is powerful enough to find the good

contours with this simple image-dependant information.

4.2. Closed Contour Detection as A Set of Piecewise
Smooth Finsler Minimal Paths.

Consider a collection of user-specified physical positions

H := {xi ∈ Ω, i = 1, 2, ...,m} with m ≥ 2, all of which

are on the boundary of the object. The goal is to find a

closed contour linking those physical points in H by cur-

vature penalized geodesics to form a complete boundary of

the object. We denote the orientation lifting of H by D:

D :=
{
xi = (xi, θi), x̃i = (xi,mod(θi + π, 2π)),

i = 1, 2, ...,m, θi ∈ [0, 2π)
}
,

where the directions θi can be manually specified, or cal-

culated using the rotated image gradient field. We show

those vertices in Fig. 4 (a) by blue and red dots denoting

the physical positions. The arrows indicate the correspond-

ing tangents. Each point xi ∈ H corresponds two orienta-

tion lifted vertices: xi and x̃i in D with opposite tangents.

Notation: if p = (p, θp) is a vertex in D, then we use

p̃ = (p,mod((θp + π), 2π)) to denote the vertex which has

the same physical position with p but opposite tangents.

We start the proposed closed contour detection method

by selecting the first physical position, assuming as x1.

Then the orientation lifted vertices of x1 are denoted by

x1, x̃1 ∈ D. Once x1 is specified, we remove x1 and x̃1

from D. In Fig. 4 (a), we denote x1, x̃1 by red dot with two

arrows. Let z1 ∈ D be the closest vertex to x1 in terms of

geodesic distance Wx1
as discussed in Section 3.3, i.e.,

z1 = argmin
z∈D

Wx1
(z).
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Figure 5. Geodesics from the proposed model. Column 1: red dots are

initial source points. Column 2: green dots are initial source points. Col-

umn 3: closed contours combining the two geodesics.

Figure 6. Results from different minimal path models. Columns

1-3 are the results from the Cohen-Kimmel model, the IL model

and the proposed model respectively.

Similarly to z1, we define the closest vertex z2 ∈ D of x̃1.

With those definitions, the first and second vertices q1, q2

are chosen simultaneously:

(q1,q2) =

{
(x1, z1), if Wx1

(z1) < Wx̃1
(z2),

(x̃1, z2), otherwise.
(22)

q1 and q2 are shown in Fig. 4 (b). If the action map Wx1

( resp. Wx̃1
) is computed via the fast marching algorithm,

the vertex z1 (resp. z2) is the first one reached by the front,

which is monotonically advancing. Once q1, q2 are found,

the geodesic Cq1,q2
can be recovered using (7) and q2, q̃2

will be removed from D. Taking q2 as the initial source

point for fast marching algorithm, we find next vertex q3

by q3 = argminz∈D Wq2
(z), and remove q3, q̃3 from

D. Then the geodesic Cq2,q3
can be tracked. When the

final point qm is found, as an example see q3 in Fig. 4

(c), the geodesic Cqm,q1
is computed by simply letting qm

be the initial source point and q1 be the endpoint as the

curve labeled by cyan in Fig. 4 (d). This method simply

matches points by pairs, joining a vertex to the remaining

nearest neighbour w.r.t. the geodesic distance, so as to form

a closed contour. Note importantly, that the obtained piece-

wise geodesic contour is smooth (C1 differentiable) since

the endpoint/startpoint of consecutive geodesics have both

matching positions qi and orientations θi. In summary, this

detection method aims to seeking a set χ of pairs of points:

χ =

m−1⋃

i=1

{
(qi, qi+1)

}⋃{
(qm, q1)

}
, (23)

and a set of Finsler minimal paths denoted by C, joining all

the pairs of points in χ.

The proposed detection procedure benefits from the

asymmetry of the proposed Finsler minimal paths. In Fig. 5,

we show this asymmetric property by exchanging the initial

and end vertices. The extracted minimal paths in the left

and right columns pass different parts of the boundaries of

the objects. While for symmetric metric, exchanging initial

and end vertices will lead to the same extracted geodesic.

In the right column of Fig. 5, the closed contours are com-

bined by the extracted geodesics, which means that, at least

in some simple cases, extracting the full closed contour of

an object only requires two vertices by the proposed contour

detection without using the saddle points as in [18].

5. Experiments

In the following experiments, we suppose that a path has

the same visualized colour as its initial point. For instance,

the red dot corresponds to the initial point of a geodesic

labeled by red. We set λ = 100 see (14), for all the follow-

ing experiments and the resolution for orientation dimen-

sion is 2π/72. To demonstrate the advantages of using cur-

vature penalty and asymmetric Finsler metric, we compare

the Cohen-Kimmel model [13], the IL model [24] and the

proposed model. For the IL model we use the metric in (9)

corresponding to ΦIL(·, θπ) = Φb(·, θπ), θπ ∈ [0, π) and

ρ = 1/α0, where α0 is used in (21).

The intuitive application of the minimal path models is

to extract geodesics for given initial source points and end-

points as shown in Fig. 6 tested on Weizmann data set [1].

In Fig. 6, columns 1-3 are the results from the Cohen-

Kimmel model [13], the IL model [24] and the proposed

model respectively, with red dots indicating the initial posi-

tions and green points as the end positions. One can see that

our model can obtain the correct and smooth minimal paths

thanks to the curvature penalty.

In Fig. 7, we show the contour detection results in na-

ture images [1] from three models: Cohen-Kimmel model,

the IL model and the proposed model in columns 2-4. In

the first column we demonstrate the normalized Frobenius

norm (not Φb). In this experiment, we first identify the col-

lection χ in (23) by the proposed contour detection proce-

dure described in Section 4. Then the contour detection
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Figure 7. Contour detection results from different models. Column 1 show the edge maps. Columns 2-4 show the contour detection results

from the Cohen-Kimmel model, the IL model and the proposed model.

results in second and third columns are obtained by sim-

ply using the geodesics recovered by the Cohen-Kimmel

and the IL models to link all the pairs of points in the just-

identified χ respectively. It can be seen that the results from

the Cohen-Kimmel and the IL models suffer from short cuts

due to the lack of curvature regularization while the results

in the final column produced by the proposed model with

suitable curvature penalty can avoid such short cuts.

6. Conclusion

In this paper, we consider a minimal path model with

curvature penalty, the Mumford/Euler weighted elastica

curves, implemented via orientation lifted Finsler metrics.

We show that the extracted curvature penalized geodesics

can be concatenated into a smooth closed contour for ob-

ject segmentation. The proposed Finsler metric enforces the

contour smoothness, and a strong asymmetry which bene-

fits to the method. Comparing to the state-of-the-art mini-

mal path models, our model could get much better contour

detection results even for the objects with weak edges.
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