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Abstract

Person re-identification across cameras remains a very

challenging problem, especially when there are no over-

lapping fields of view between cameras. In this paper,

we present a novel multi-channel parts-based convolution-

al neural network (CNN) model under the triplet framework

for person re-identification. Specifically, the proposed CNN

model consists of multiple channels to jointly learn both the

global full-body and local body-parts features of the input

persons. The CNN model is trained by an improved triplet

loss function that serves to pull the instances of the same

person closer, and at the same time push the instances be-

longing to different persons farther from each other in the

learned feature space. Extensive comparative evaluation-

s demonstrate that our proposed method significantly out-

performs many state-of-the-art approaches, including both

traditional and deep network-based ones, on the challeng-

ing i-LIDS, VIPeR, PRID2011 and CUHK01 datasets.

1. Introduction

Person re-identification is the problem of matching the

same individuals across multiple cameras, or across time

within a single camera. It is attracting rapidly increased

attentions in the computer vision and pattern recognition

research community due to its importance for many ap-

plications such as video surveillance, human-computer in-

teraction, robotics, content-based video retrieval, etc. De-

spite years of efforts, person re-id remains challenging due

to the following reasons: 1) dramatic variations in visual

appearance and ambient environment caused by differen-

t viewpoints from different cameras; 2) significant changes

in human pose across time and space; 3) background clutter

and occlusions; and 4) different individuals that share sim-

ilar appearances. Moreover, with little or no visible faces,

in many cases the use of biometric and soft-biometric ap-

proaches is not applicable. Figure 1 illustrates some exam-

ples of the matched pairs in four challenging person re-id

Figure 1. Matched examples in datasets i-LIDS, VIPeR, CUHK01

and PRID2011. Each row shows matched examples from the same

dataset. Images in a red bounding box contain the same person.

benchmark datasets i-LIDS [38],VIPeR[13],PRID2011[17]

and CUHK01[24]. Images in each red bounding box are

from the same person.

Given a query person’s image, in order to find the cor-

rect matches among a large set of candidate images cap-

tured by different cameras, two crucial problems must be

addressed. First, good image features are required to rep-

resent both the query and the gallery images. Second,

suitable distance metrics are indispensable to determine

whether a gallery image contains the same individual as

the query image. Many existing studies consider the t-

wo problems separately and have focused more on the first

one, that is, developing more discriminative and robust fea-

ture representations to describe a person’s visual appear-
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ance [14, 32, 10, 40, 19, 7, 2, 4, 8]. Once the feature ex-

traction is completed, these methods usually choose a s-

tandard distance measure such as l1-norm based distance

(L1norm) [40], Bhattacharyya distance (Bhat)[14], or Ma-

halanobis distance (Maha)[33] to determine the similarity

between pairs.

The situation has motivated us to consider the feature

and distance metric learning problems jointly to improve

the person re-id performance. To extract better features for

raw person images, we propose a new, multi-channel CNN

model that learns features for both the input person’s ful-

l body and the body parts. The full body and body part-

s features are concatenated together and fed into the top

full-connection layer to produce the final representation of

the input person. We also borrow the idea from Wang’s et

al. [39] and the FaceNet work [34] to use triplet training

examples and the improved triplet loss function to further

enhance the discriminative power of the learned features.

In contrast to the original triplet loss function that only re-

quires the intra-class feature distances to be less than the

inter-class ones, the improved loss function further requires

the intra-class feature distances to be less than a predefined

margin. Our experimental evaluations show that the use of

the improved triplet loss function alone can improve the per-

son re-id accuracy by up to 4%, compared to the same DC-

NN model using the original triplet loss function.

Given a person’s image, the proposed CNN model out-

puts an 800 dimension feature representation of the input

image. The proposed CNN model together with the im-

proved triplet loss function can be considered as learning a

mapping function that maps each raw image into a feature

space where the difference between images of the same per-

son is less than that of different persons. Therefore, the pro-

posed framework can learn the optimal feature and distance

metric jointly for the person re-id task.

The main contributions of this paper are twofold: 1) a

novel, multi-channel CNN model that learns both the glob-

al full-body and the local parts features, and integrates them

together to produce the final feature representation of the in-

put person; 2) an improved triplet loss function that requires

the intra-class feature distances to be less than not only the

inter-class ones, but also a predefined threshold. Experi-

mental evaluations results show that the proposed method

achieves the state-of-the-art performances on several wide-

ly adopted person re-id benchmark test datasets.

2. Related Work

Typical person re-id systems consist of two major com-

ponents: a feature extraction method to describe the query

image and the gallery images, and a distance metric for

comparing those features across images. Research on per-

son re-id problems usually focuses either on constructing

robust and discriminative features, or finding an improved

similarity metric for comparing features, or a combination

of both.

There are a great amount of research efforts for devel-

oping better features that are at least partially invariant to

lighting, pose, and viewpoint variations. Features that have

been used for the person re-id task include color histogram-

s and their variants [41, 20, 21, 28, 23, 46], local binary

patterns(LBP) [41, 20, 21, 28, 23, 46], Gabor features [23],

color names [44], and other visual appearance or contextual

cues [3]. Quite some works have also investigated combi-

nations of multiple visual features, including [41, 20, 23].

A large number of metric learning and ranking algo-

rithms have also been applied to the person re-id prob-

lem [43, 31]. The basic idea behind metric learning is

to find a mapping function from the feature space to the

distance space with certain merits, such as feature vec-

tors from the same person being closer than those from

different ones. These metric learning methods mainly

include Mahalanobis metric learning(KISSME) [21], Lo-

cal Fisher Discriminant Analysis(LFDA) [41], Marginal

Fisher Analysis(MFA) [41], large margin nearest neigh-

bour (LMNN)[41], Locally Adaptive Decision Function-

s(LADF) [26], and attribute consistent matching [20].

Inspired by the great success of deep learning net-

works in various computer vision and pattern recognition

tasks [22, 11, 36, 37, 16], it becomes increasingly popular

to apply deep convolution neural network(DCNN) models

to the person re-id problem. It is worth noting that, recen-

t state-of-the-art performances on widely used person re-

id benchmark datasets, such as i-LIDS, VIPeR, CUHK01,

etc, are all obtained by DCNN-based methods. In the fol-

lowing, we briefly introduce those deep learning based ap-

proaches related to, or to be compared with our work. Wang

et al. [39] used triplet training examples and the triplet

loss function to learn fine grained image similarity met-

rics. FaceNet [34] and Ding et al. [6] applied this triplet

framework to the face and person re-identification prob-

lems, respectively. In this paper, we also borrow the idea

from [39] and propose an improved triplet loss function

for the person re-id task. DeepReID[25] proposed a novel

Filter Pairing Neural Network (FPNN) that jointly handles

the problems of misalignment, photometric and geometric

transforms, occlusion and black cluster, etc, by using the

patch matching layers to match the filter responses of lo-

cal patches across views, and other convolution and max-

pooling layers to model body parts displacements. mFilter

[48] also used the local patch matching method that learns

the mid-level filters to get the local discriminative features

for the person re-id task. Ahmed et al. [1] proposed an

improved deep learning architecture which takes pair-wise

images as its inputs, and outputs a similarity value indicat-

ing whether the two input images depict the same person

or not. Novel elements in their model include a layer that
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computes cross-input neighborhood differences to capture

local relationships between the two input images based on

their mid-level features, and a patch summary layer to get

high-level features. Yi et al. [45] constructed a siamese

neural network (denoted as DeepM in our paper) to learn

pairwise similarity, and also used body parts to train their

CNN models. In their work, person images are cropped

into three overlapped parts which are used to train three in-

dependent networks. Finally the three networks are fused at

the score level.

Our CNN model differs from the above deep network

based approaches in both the network architecture and the

loss function. More specifically, We use a single network

that consists of multiple channels to learn both the global

full-body and local body-parts features. We use differen-

t convolution kernel sizes in different types of channels to

look at full-body and body-parts with different resolutions,

which is similar to the idea of the root/part filters in a DP-

M model [9]. In addition, we use an improved triplet loss

function to make the features from the same person clos-

er, meanwhile features from different persons farther away

from each other. In Section 4, performance comparisons

with some of the above methods will be made in our exper-

imental evaluations.

3. The Proposed Person Re-Id Method

In this section, we present the proposed person re-id

method in details. We first describe the overall framework

of our person re-id method, then elaborate the network ar-

chitecture of the proposed multi-channel CNN model. Fi-

nally, we present the improved triplet loss function used to

train the proposed CNN model.

3.1. The Overall Framework

As illustrated in figure 2, similar to the works in [39, 34],

the proposed person re-id method uses triplet examples to

train the network. Denote by Ii =< Ioi , I
+
i , I−i > the three

input images forming the i-th triplet, where Ioi and I+i are

from the same person, while I−i is from a different person.

Through the three CNNs that share the parameter set w, i.e.,

weights and biases, we map triplets Ii from the raw image

space into a learned feature space, where Ii is represented

as φw(Ii) =< φw(Ioi ), φw(I+i ), φw(I−i ) >. Each CNN

in the figure is a proposed multi-channel CNN model that

is able to extract both the global full-body and local body-

parts features. When the proposed CNN model is trained

using the improved triplet loss function, the learned fea-

ture space will have the property that the distance between

φw(Ioi ) and φw(I+i ) is less than not only the distance be-

tween φw(Ioi ) and φw(I−i ), but also a predefined margin.

The improved loss function aims to pull the instances of the

same person closer, and at the same time push the instances
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Figure 2. Triplet training framework. Triplet training images are

fed into three network models with the shared parameter set. The

triplet loss function is used to train the network models, which

makes the distance between the matched pairs less than not only a

predefined threshold, but also that of the mismatched pairs in the

learned feature space.

belonging to different persons farther from each other in the

learned feature space.

3.2. Multi­Channel Parts­based CNN Model

The proposed multi-channel CNN model mainly consists

of the following distinct layers: one global convolution lay-

er, one full-body convolution layer, four body-part convo-

lution layers, five channel-wise full connection layers, and

one network-wise full connection layer. As shown in Fig-

ure 3, the global convolution layer is the first layer of the

proposed CNN model. It consists of 32 feature maps with

the convolution kernel of 7× 7× 3 and the stride of 3 pix-

els. Next, this global convolution layer is divided into four

equal parts Pi, i = {1, . . . , 4}, and each part Pi forms the

first layer of an independent body-part channel that aims

to learn features for the respective body part. A full-body

channel with the entire global convolution layer as its first

layer is also established to learn global full-body features of

the input persons. The four body-part channel together with

the full-body channel constitute five independent channels

that are trained separately from each other.

The full-body channel is configured as follows: The

global convolution layer, max pooling, the full-body con-

volution layer, another max pooling, and a full-connection

layer. The kernel size for max pooling is 3 × 3, and the

full-connection layer generates an output of 400 dimension-

s. The four body-part channels have the same configuration

as follows: The copy of one of the four equally divided part-

s of the global convolution layer, the body-part convolution
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Figure 3. Network Architecture of the proposed multi-channel C-

NN model. The first layer is called the global convolution layer

donated as G-conv1. It is then divided into four equal parts, de-

noted as Pi-conv1, where i = {1, . . . , 4}. Each Pi-conv1 forms

the first layer of an independent body-part channel, which is fol-

lowed by a body-part convolution layer denoted as Pi-conv2, and

a channel-wise full connection layer denoted as Pi-fc. The full-

body channel consists of max pooling of G-conv1 denoted as B-

pool1, full-body convolution layer denoted as B-conv2, another

max pooling denoted as B-pool2, and a channel-wise fully con-

nection layer denoted as B-fc. The network-wise full connection

layer is denoted as N-fc.

layer, no max pooling, and a full-connection layer. The full-

connection layer generates an output of 100 dimensions.

Because the full-body convolution layer and the four body-

part convolution layers aim to learn the global full-body and

the local body-parts features, respectively, we use the con-

volution size of 5 × 5 for the former and a smaller size of

3 × 3 for the latter. This serves to learn finer grain local

features for persons’ body parts. Both types of convolution

layers use the stride of 1. Note that all the convolution lay-

ers in our CNN model contain a relu layer to produce their

outputs.

The above network configuration achieves state-of-the-

art person re-id accuracies on relatively small benchmark

datasets. In our experiments, we found that for some larger

datasets such as CUHK01, constructing each of the five sep-

arate channels with two convolution layers lead to a much

better result. Therefore, we use two network configurations

to handle small and large benchmark datasets, respectively.

The two network configurations are mostly the same except

for the number of convolution layers (one or two) in each

separate channel.

At the final stage, the outputs of the channel-wise full

connection layers from the five separate channels are con-

catenated into one vector, and is fed into the final network-

wise full connection layer. The multi-channel structure de-

scribed above enables learning of the global full-body and

local body-parts features jointly, and the fusion of these t-

wo types of features at the final stage leads to remarkable

improvements of person re-id accuracies.

3.3. Improved Triplet Loss Function

As described in 3.1, we use triplet examples to train the

network model. Given a triplet Ii =< Ioi , I
+
i , I−i >, the

network model maps Ii into a learned feature space with

φw(Ii) =< φw(Ioi ), φw(I+i ), φw(I−i ) >. The similari-

ties between the triplet images Ioi , I
+
i , I−i are measured by

the L2-norm distances between φw(Ioi ), φw(I+i ), φw(I−i ).
The original triplet loss function requires that distance of

the pair (φw(Ioi ), φw(I−i )) be larger than that of the pair

(φw(Ioi ), φw(I+i )) by a predefined margin, and uses the fol-

lowing equation to enforce this requirement:

dn(Ioi , I
+
i , I−i ,w) = (1)

d(φw(Ioi ), φw(I+i ))− d(φw(Ioi ), φw(I−i )) ≤ τ1.

In the equation τ1 is negative. However, since this loss func-

tion does not stipulate how close the pair (φw(Ioi ), φw(I+i ))
should be, as a consequence, instances belonging to the

same person may form a large cluster with a relatively large

average intra-class distance in the learned feature space.

Clearly, this is not a desired outcome, and will inevitably

hurt the person re-id performance.

Based on the above observation, we add a new term to

the original triplet loss function to further require that dis-

tance of the pair (φw(Ioi ), φw(I+i )) be less than a second

margin τ2, and that τ2 be much smaller than |τ1|. Translat-

ing this statement into equation, we have:

dp(Ioi , I
+
i ,w) = d(φw(Ioi ), φw(I+i )) ≤ τ2. (2)

The improved loss function aims to pull the instances of the

same person closer, and at the same time push the instances

belonging to different persons farther from each other in

the learned feature space. This is more consistent with the

principal used by many data clustering and discriminative

analysis methods.

In summary, the improved triplet loss function is defined
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as follows:

L(I,w) =
1

N

N∑

i=1

(max{dn(Ioi , I
+
i , I−i ,w), τ1}

︸ ︷︷ ︸

inter−class−constraint

+ βmax{dp(Ioi , I
+
i ,w), τ2}

︸ ︷︷ ︸

intra−class−constraint

),

(3)

where N is the number of triplet training examples, β is a

weight to balance the inter-class and intra-class constraints.

In our implementation, the distance function d(., .) is de-

fined as the L2-norm distance,

d(φw(Ioi ), φw(I+i )) = ||φw(Ioi )− φw(I+i )||2. (4)

3.4. The Training Algorithm

We use the stochastic gradient decent algorithm to train

the proposed CNN achitecture model with the improved

triplet loss function. The derivatives of Eq.(3) can be com-

puted as follows:

∂L(I, w)

∂w
=

1

N

N∑

i=1

h1(Ii, w) +
1

N

N∑

i=1

h2(Ii, w) (5)

h1(Ii,w) =







∂dn(Ioi , I
+
i , I−i ,w)

∂w
dn(Ioi , I

+
i , I−i ,w) > τ1

0 dn(Ioi , I
+
i , I−i ,w) ≤ τ1.

(6)

h2(Ii,w) =







β
∂dp(Ioi , I

+
i ,w)

∂w
dp(Ioi , I

+
i ,w) > τ2

0, dp(Ioi , I
+
i ,w) ≤ τ2.

(7)

By the definitions of dn(Ioi , I
+
i , I−i ,w) and

dp(Ioi , I
+
i ,w), we can obtain their gradients as follows,

∂dn

∂w
= 2(φw(Ioi )− φw(I+i ))

∂φw(Ioi )− ∂φw(I+i )

∂w

− 2(φw(Ioi )− φw(I−i ))
∂φw(Ioi )− ∂φw(I−i )

∂w
.

(8)

∂dp

∂w
= 2(φw(Ioi )− φw(I+i ))

∂φw(Ioi )− ∂φw(I+i )

∂w
, (9)

From the above derivations, it is clear that the gradient on

each input triplet can be easily computed given the values of

φw(Ioi ), φw(I+i ), φw(I−i ) and
∂φw(Io

i )
∂w

,
∂φw(I+

i
)

∂w
,
∂φw(I−

i
)

∂w
,

which can be obtained by separately running the standard

forward and backward propagations for each image in the

triplet examples. As the algorithm needs to go though all

the triplets in each batch to accumulate the gradients for

each iteration, we call it the triplet-based stochastic gradient

descent algorithm. Algorithm 1 shows the main procedures

of the training algorithm.

Algorithm 1 Triplet-based stochastic gradient descen-

t training algorithm

1: Input

Training samples {Ii}
2: Output

The network parameters {w}
3: while t < T do

4: t← t+ 1
5:

∂L(I,w)
∂w

= 0
6: for all training triplet samples Ii do

7: Calculate φw(Ioi ), φw(I+i ), φw(I−i ) by forward

propagation;

8: Calculate
φw(Io

i )
∂w

,
∂φw(I+

i
)

∂w
,
∂φw(I−

i
)

∂w
by back

propagation;

9: Calculate ∂dp

∂w
and ∂dn

∂w
according to Eq. 9 and

8;

10: Calculate
∂L(I,w)

∂w
according to Eq. 5, 7, and 6.

11: end for

12: Update the parameters wt = w
t−1 − λt

∂L(I,w)
∂w

.

13: end while

4. Experiments

4.1. Setup

Data augmentation: Data augmentation is an importan-

t mean for increasing the volume of training data, and for

alleviating the over-fitting problem. In our implementation,

we resize all the images into 100 × 250 pixels. During the

training process, we crop a center region of 80 × 230 pix-

els with a small random perturbation from each image to

augment the training data.

Setting training parameters: The weights are initial-

ized from two zero-mean Gaussian distributions with the s-

tandard deviations of 0.01 and 0.001, respectively. The bias

terms are set to 0. We generate the triplets as follows: For

each batch of 100 instances, we select 5 persons and gen-

erate 20 triplets for each person in each iteration. In each

triplet, the matched reference is randomly selected from the

same class, and the mismatched one is also randomly se-

lected, but from the remaining classes. In our experiments,

the parameters τ1, τ2, β in Eq.(3) are set to −1, 0.01 and

0.002, respectively.

Datasets: We use four popular person re-id benchmark

datasets, i-LIDS, PRID2011, VIPeR and CUHK01, for per-

formance evaluations. All the datasets contain a set of per-

sons, each of whom has several images captured by differ-

ent cameras. The following is a brief description of these

four datasets:

i-LIDS dataset: It is constructed from video images shoot-

ing a busy airport arrival hall. It contains 479 images

from 119 persons, which are normalized to 128 × 64
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pixels. Each person has four images in average. These

images are captured by non-overlapping cameras, and

are subject to large illumination changes and occlu-

sions.

PRID2011 dataset: This dataset consists of images record-

ed by two static surveillance cameras. Camera view A

and B contain 385 and 749 persons, respectively, with

200 persons appearing in both views.

VIPeR dataset: This dataset contains two views of 632 per-

sons. Each pair for a person is captured by different

cameras with different viewpoints, poses, and lighting

conditions. It is one of the most challenging datasets

for the person re-id task due to its huge variance and

discrepancy.

CUHK01 dataset: This is a larger dataset for the person

re-id task, which contains 971 persons captured from

two camera views in a campus environment. Camer-

a view A captures frontal or back views of a person

while camera B captures the person’s profile views.

Each person has four images with two from each cam-

era.

Evaluation protocol We adopt the widely used cumula-

tive match curve (CMC) metric for quantitative evaluations.

For each dataset, we randomly select about half of the per-

sons for training, and the remaining half for testing. For

datasets with two cameras, we randomly select one image

of a person from camera A as a query image and one image

of the same person from camera B as a gallery image. For

multi-camera datasets, two images of the same individual

are chosen: one is used as a query and the other as a gallery

image. The gallery set comprises one image for each per-

son. For each image in the query set, we first compute the

distance between the query image and all the gallery im-

ages using the L2 distance with the features produced by

the trained network, and then return the top n nearest im-

ages in the gallery set. If the returned list contains an image

featuring the same person as that in the query image at k-th

position, then this query is considered as success of rank k.

We repeat the procedure 10 times, and use the average rate

as the evaluation result.

4.2. Experimental Evaluations

Our proposed person re-id method contains two novel

ingredients: 1) the multi-channel CNN model that is able

to learn both the global full-body and the local body-parts

features, 2) the improved triplet loss function that serves

to pull the instances of the same person closer, and at the

same time push the instances belonging to different person-

s farther from each other in the learned feature space. To

reveal how each ingredient contributes to the performance

improvement, we implemented the following four variants

Table 1. Experimental evaluations on i-LIDS dataset.

Method Top1 Top5 Top10 Top15 Top20 Top30

Adaboost[14]29.6 55.2 68.1 77.0 82.4 92.1
LMNN[41] 28.0 53.8 66.1 75.5 82.3 91.0
ITML[5] 29.0 54.0 70.5 81.0 86.7 95.0
MCC[12] 31.3 59.3 75.6 84.0 88.3 95.0
Xing’s[42] 27.0 52.3 63.4 74.8 80.7 93.0
PLS[35] 22.1 46.0 60.0 70.0 78.7 87.5
L1norm[40] 30.7 55.0 68.0 75.0 83.0 90.0
Bhat.[14] 28.4 51.1 64.3 72.0 78.8 89.0
PRDC[49] 37.8 63.7 75.1 82.8 88.4 95.0
Sakrapee[31]50.3 −− −− −− −− −−
Ding[6] 52.1 68.2 78.0 83.6 88.8 95.0
OursT 43.2 64.9 74.9 84.4 86.1 93.3
OursTC 47.3 69.8 80.1 88.6 90.4 95.3
OursTP 57.2 80.7 90.9 96.4 97.1 98.9
OursTCP 60.4 82.7 90.7 96.4 97.8 99.3

Table 2. Experimental evaluations on PRID2011 dataset.

Method Top1 Top10 Top20 Top50 Top100

KISSME [21] 15.0 39.0 52.0 68.0 80.0
EIML[18] 16.0 39.0 51.0 68.0 81.0
LMNN[41] 10.0 30.0 42.0 59.0 73.0
LMNN-R[41] 9.0 32.0 43.0 60.0 76.0
ITML[5] 12.0 36.0 47.0 64.0 79.0
LDML[15] 2.0 6.0 11.0 19.0 32.0
Maha[33] 16.0 41.0 51.0 64.0 76.0
Euclidean[33] 3.0 10.0 14.0 28.0 45.0
Descr[17] 4.0 24.0 37.0 56.0 70.0
DeepM[45] 17.9 45.9 55.4 71.4 −−
Sakrapee[31] 17.9 −− −− −− −−
OursT 17.0 39.0 46.0 49.0 55.0
OursTC 15.0 41.0 47.0 53.0 58.0
OursTP 22.0 43.0 55.0 67.0 78.0
OursTCP 22.0 47.0 57.0 76.0 83.0

of the proposed person re-id method, and compared them

with a dozen of representative methods in the literature:

Variant 1 (denoted as OursT): We remove the four body-

part channels from the proposed CNN model and use

the original triplet loss function to train the network.

Variant 2 (denoted as OursTC): We use the same network

model as OursT, but use the improved triplet loss func-

tion to train the network instead.

Variant 3 (denoted as OursTP): We use the full version

of the proposed multi-channel CNN model and train it

with the original triplet loss function.

Variant 4 (denoted as OursTPC): We use the same network

model as OursTP, but train it with the improved triplet
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Table 3. Experimental evaluations on VIPeR dataset.

Method Top1 Top5 Top10 Top15 Top20 Top30

MtMCML[29] 28.8 59.3 75.8 83.4 88.5 93.5
SDALF[8] 19.9 38.4 49.4 58.5 66.0 74.4
eBiCov[28] 20.7 42.0 56.2 63.3 68.0 76.0
eSDC[47] 26.3 46.4 58.6 66.6 72.8 80.5
PRDC[49] 15.7 38.4 53.9 63.3 70.1 78.5
aPRDC[27] 16.1 37.7 51.0 59.5 66.0 75.0
PCCA[30] 19.3 48.9 64.9 73.9 80.3 87.2
KISSME[21] 19.6 48.0 62.2 70.9 77.0 83.7
SalMatch[46] 30.2 52.3 66.0 73.4 79.2 86.0
LMLF[48] 29.1 52.3 66.0 73.9 79.9 87.9
Ding[6] 40.5 60.8 70.4 78.3 84.4 90.9
mFilter+LADF[48]43.4 −− −− −− −− −−
Sakrapee[31] 45.9 −− −− −− −− −−
OurT 34.3 55.6 65.1 71.7 74.4 81.7
OurTC 37.2 55.6 67.1 76.5 75.3 83.9
OurTP 43.8 69.5 79.7 81.0 85.4 90.2
OurTCP 47.8 74.7 84.8 89.2 91.1 94.3

Table 4. Experimental evaluations on CUHK01 dataset.

Method Top1 Top5 Top10 Top15 Top20 Top30

mFilter[48] 34.3 55.0 65.3 70.5 −− −−
SalMatch[46] 28.5 46.3 57.2 64.1 −− −−
PatMatch[46] 20.4 34.1 41.0 47.3 −− −−
genericM[24] 20.0 44.1 57.1 64.3 −− −−
ITML[5] 16.0 28.5 45.3 53.5 −− −−
LMNN[41] 13.5 31.2 41.8 48.5 −− −−
eSDC[47] 19.7 33.1 40.5 46.8 −− −−
FPNN[25] 27.9 −− −− −− −− −−
Ejaz[1] 47.5 −− −− −− −− −−
Sakrapee[31] 53.4 76.4 84.4 −− 90.5 −−
Ours3T 46.0 67.7 78.7 85.3 88.7 90.3
Ours3TC 49.3 76.5 86.6 93.7 94.7 98.0
Ours3TP 52.3 82.1 90.3 94.0 95.6 98.4

Ours3TCP 53.7 84.3 91.0 93.3 96.3 98.3

loss function.

Note that, since the CUHK01 dataset is much larger than the

other three datasets, we choose to model it using a larger

configuration with an additional convolution layer in each

of the five channels. The derived models corresponding to

Variant 1 to 4 are denoted as Ours3T, Ours3TC, Ours3TP,

and Ours3TPC, respectively.

Table 1, 2, 3, and 4 show the evaluation results on the

four benchmark datasets, respectively, using the top 1, 5,

10, 15, 20, and 30 ranking accuracies. Each table includes

11 to 14 representative methods that have reported evalu-

ation results on the corresponding dataset. Some of the

works in these tables, such as Ding’s method [6], FPPN

Table 5. Analysis the parameter β on VIPeR dataset.

β Top1 Top5 Top10 Top15 Top20 Top30

0 43.8 69.5 79.7 81.0 85.4 90.2
0.001 45.9 73.4 81.9 87.0 93.0 95.6

0.002 47.8 74.7 84.8 89.2 91.1 94.3
0.003 45.6 75.3 85.4 87.6 90.5 94.6
0.004 43.7 73.1 81.5 87.9 91.1 93.4

[25], DeepM[45], mFilter[48] and Ejaz’s[1] all used DC-

NN models to learn features for the person re-id task, and

their performance accuracies are near the top in the list.

Among these works, DeepM also used body parts to train

their CNN models. In contrast to our single network with

multiple channels, this work divides person images into

three overlapped parts, and uses them to train three inde-

pendent networks. The three networks are fused at the s-

core level. There are also some works, such as Sakrapee’s

method [31], mFilter+LADF [48], that combine several d-

ifferent approaches to boost the performance accuracies.

These ensemble methods have achieved state-of-the-art per-

formances so far.

Compared to the above representative works, the

OursTCP model has achieved the top performances on all

the four datasets, with all the six ranking measurements.

The evaluation results shown in the four tables can be sum-

marized as follows.

• Compared to Sakrapee’s ensemble-based method,

which is the state-of-the-art method so far, the

OursTCP model is slightly better on CUHK01 dataset,

but remarkably outperforms the former on the remain-

ing three datasets by a margin of 2% to 10%.

• The improved triplet loss function is able to improve

the performance accuracies for both the single and

multi-channel models. Training a model with this loss

function can get up to 4% performance improvement

compared to the same model trained with the original

triplet loss function.

• The multi-channel model that explores both the global

full-body and local body-parts features is very pow-

erful and effective for improving the performance ac-

curacies. Compared to the model with no parts infor-

mation in the structure, it can boost the person re-id

accuracy by up to 13%.

As defined by Eq.(3), the improved triplet loss function

contains two terms: the intra-class and the inter-class con-

straints. To investigate the effect of the parameter β on

the performance accuracy, we conducted experiments us-

ing cross validation method on the VIPeR dataset, and the

results are shown in Table 5. We can clearly see that our

proposed person re-id method yields the best performances
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Figure 4. Analysis of different body parts on VIPeR dataset.

when β is in the range of 0.001 to 0.003. Based on this

observation, we set β to 0.002 in all our experimental eval-

uations.

4.3. Analysis of different body parts

To understand the contribution of different body regions

to the person re-id performance accuracy, we trained four d-

ifferent network models that contains the full-body channel

and one body-part channel which corresponds to the body-

part 1, 2, 3 and 4, respectively. These four models are denot-

ed as Ours-Part1, Ours-Part2, Ours-Part3, and Ours-Part4,

respectively. We also included the models of OursT and

OursTP for comparisons. The experiments are performed

on the VIPeR dataset, and the performance accuracies are

shown in Figure 4. It is interesting to observe that the body

part 1, which includes the face and shoulder of a person,

leads to the largest performance improvement. When we

move down the body, the performance improvement gradu-

ally decreases, with the body part 4, which includes the legs

and feet of a person, providing the least performance im-

provement. This result is not surprising, because legs and

feet are the moving parts of a person, which change dra-

matically in shape and pose. Such parts provide the least

reliable features, and hence contribute little to the person

re-id task.

We have visualized the features learned by each con-

volution layer, which are shown in Figure 5. We can see

that the second convolution layer of the full-body channel

captures the global information of each person, while the

second convolution layers of the four body-parts channels

capture the detailed local body-parts features of a person.

Therefore, such a joint representation and learning frame-

work for the global full-body and local body-parts features

can achieve superior performances.

5. Conclusion

In this paper, we present a novel multi-channel parts-

based convolutional network for person re-identification

problem, which is formulated under a triplet framework vi-

a an improved triplet loss function. In this framework, we

Input G-conv1 B-conv2 Pi-conv2

Figure 5. Learned feature maps of the network. G-conv1 shows

features learned by the global convolution layer. B-conv2 repre-

sents the features learned by the full-body convolution layer which

captures salient global full-body features, while Pi-conv2 capture

salient local body-parts features learned by the body-part convolu-

tion layers.

constructed a CNN architecture including both global body

convolution layer and local parts convolution layers. Thus

the feature representations learned by our model can con-

tain global information and local detailed properties. The

architecture is trained by a set of triplets to produce features

that aims to pull the instances of the same person closer,

meanwhile push the instances belonging to different per-

sons farther from each other in the learned feature space

via the organized triplet samples. And our model got state-

of-the-art performance on most benchmark datasets. In the

future, we will extend our framework and approach to other

task such as image and video retrieval problems.
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