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Abstract

We address the problem of composing a story out of mul-

tiple short video clips taken by a person during an activity

or experience. Inspired by plot analysis of written stories,

our method generates a sequence of video clips ordered in

such a way that it reflects plot dynamics and content co-

herency. That is, given a set of multiple video clips, our

method composes a video which we call a video-story. We

define metrics on scene dynamics and coherency by dense

optical flow features and a patch matching algorithm. Us-

ing these metrics, we define an objective function for the

video-story. To efficiently search for the best video-story,

we introduce a novel Branch-and-Bound algorithm which

guarantees the global optimum. We collect the dataset con-

sisting of 23 video sets from the web, resulting in a total of

236 individual video clips. With the acquired dataset, we

perform extensive user studies involving 30 human subjects

by which the effectiveness of our approach is quantitatively

and qualitatively verified.

1. Introduction

People have the natural desire to capture and store per-

sonal experiences and memories. Today, we are able to

record our activities more easily with decreasing cost of

cameras and media storages. Moreover, with the success of

smart phones and applications, photos and videos have be-

come omnipresent in our daily lives. Consequently, people

tend to capture photos and record videos without a limited

storage burden and process them later. Unfortunately, man-

ual post-processing of these contents is usually tedious, and

thus a need for an automatic summarization of contents has

arisen leading to many research on this topic [11, 17, 20].

This need has arisen due to the people’s tendency to pre-

serve only meaningful contents. More recently, rather than

simply extracting summaries, many people choose to gen-

erate meaningful stories out of photos [15] and videos [20],

and many applications (e.g. 1 Second Everyday, Road-

movies, Snapmovie) attempt to provide this type of me-

dia. Basically, works on photo story generation deal with

Figure 1: Story plot analysis. A written story consists of an ex-

position, rising action, climax, and resolution. Given a collection

of independently captured video clips, we aim to build a video se-

quence with a story plot. This figure shows our results with River-

Surfing short video clips. The sequence starts the exposition with

a clip showing a stationary scene of the environment. The follow-

ing scenes portray consecutive rising action and eventually show

the actual river surfing at the climax leading to similar scenes un-

til resolution. Notice the adjacent scenes are visually coherent as

well which do not interrupt the flow of the story.

aligning multiple photos supposedly into a temporal order.

Similar works such as photo sequencing [3, 7] take a photo

sequence input of the same scene or action and produce a

temporally ordered photo sequence. In video summariza-

tion, a long video is summarized into a shorter version while

maintaining the overall story [20]. Mobile applications re-

cently gaining much popularity like 1 Second Everyday and

Roadmovies allow the user to capture short video clips with

a mobile camera and then concatenate the short video clips

taken one after another to produce a single video.

We address the problem of composing an ordered video

clip sequence which we call video-stories out of multiple

video clips taken by a person during an activity or experi-

ence. When a person captures separate video clips later to

be concatenated, that person may not be so much concerned

about the overall structure of the resulting video. For exam-

ple, let’s say a person captures separate video clips while on

a surfing trip. The person may start off recording multiple
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clips of the actual surfing. Then, the person may decide to

appreciate the environment of the scene and record the sur-

rounding environment. Next, the person may choose to cap-

ture family and friends. Then, the person may again resume

capturing the actual surfing. The video clips captured may

well contain all of the aspects the person intended to cap-

ture during the surfing trip. However, when the videos are

concatenated together in temporal order, it may not reflect

a sense of structure, but rather simply a series of individual

experiences on the same day. Thus, our goal is to take sepa-

rate video clips and produce a video reflecting plot structure

and sense of story, namely a video-story.

Our work is inspired by the notion of plot analysis for

written stories. Fig. 1 shows the notion of a plot diagram

and its component notions along with actual results ob-

tained by our method. A typical story contains an expo-

sition where it introduces the beginning and setting of the

story. The rising action phase represents the intermediate

events between the beginning and the climax of the story

which typically involves building up action and dynamics.

The climax represents the main event, and resolution marks

the ending of the story. Simply, a story gradually increases

in action dynamics and reaches its peak at the climax and

gradually reaches the end of the story. Although the dy-

namics present in the resolution varies among stories, most

will have an ending with more activity than its beginning.

Also, stories will tend to be coherent in its contents, mean-

ing it will not have abrupt changes in scenes nor abrupt re-

visitation of scenes. Our goal is to structure the individ-

ual video clips into a video-story following this general plot

structure while maintaining coherent story transitions.

An overview of our approach is as follows. First, given

multiple short video clips, we measure the amount of activ-

ity in the individual clips via a dynamicity measure which

we define. We also measure coherency between the clips

based on a patch matching algorithm. Next, we design an

objective function that scores video sequences depending

on how well it represents a story plot structure and how

smooth and coherent the clip transitions are. The dynam-

icity measure is used to evaluate how well the candidate

video sequence follows the story plot structure. Similarly,

the dissimilarity measure is utilized in evaluating the overall

smoothness in clip transitions. Finally, we find the optimal

solution via Branch-and-Bound algorithm.

Our main contribution is the idea of composing a struc-

tured video out of multiple short videos that has story-like

qualities. We propose a general framework that achieves

this goal. To the best of our knowledge, our work is the first

to address the problem of automatically composing a story

sequence with multiple video clips separately captured. In

order to accomplish this, (1) we define a dynamicity met-

ric based on optical flow features to reflect activity in video

clips. (2) We introduce a reliable bidirectional patch match-

ing algorithm to measure the dissimilarity between clips.

(3) We design an objective function that returns the best

chain of clips representing sense of story and coherency. (4)

We introduce a Branch-and-Bound algorithm to efficiently

find the optimal solution. (5) We construct a dataset of 23

video sets (total of 236 individual clips) and conduct exten-

sive experiments involving 30 subjects.

2. Related Work

Recent research on generating a story form of media is

mainly dealt in video summarization and image sequencing

which we review in this section.

Video summarization. Works on generating a sum-

mary of a long video can take different representations.

Keyframe-based methods represent the video summary as

a sequence of keyframes selected from the video. Wolf et

al. [28] used optical flow features and Liu et al. [19] used

object tracks to select the set of keyframes. Methods includ-

ing mosaic-based representation [1] have been explored to

efficiently cluster scenes into physical settings, and user in-

teraction based approaches [10] have been proposed to ren-

der action summary layouts. Lee et al. [17] proposed to

find important people and objects from regional cues for

egocentric video summarization. Also, some optimization

approaches include works that represent a video as a high

dimensional trajectory curve and analyze via binary curve

splitting algorithm [6]. Apart from keyframe representa-

tion, some works represent summaries via skims or sub-

shots. Naturally, some works address spatio-temporal fea-

tures [16, 25] for subshot selection. Ngo et al. [21] pro-

posed a motion attention model based on human perception

to compute subshot quality. Feldman et al. [8] proposed

a novel core-set algorithm for k-segmentation of stream-

ing data. On the other hand, a supervised learning ap-

proach [11] has also been conducted for selecting appropri-

ate subshots. In addition to feature based approaches, Lu et

al. [20] proposed to measure influence between subshots

based on visual objects in egocentric videos. In robotics,

Volkov et al. [26] proposed a feature-based core-set algo-

rithm for summarizing video data. Video summarization fo-

cuses on representing the summary of a single long video,

whereas our approach addresses generating a video-story

from multiple video clips.

Image sequencing. Many works on image sequencing

have attempted to align the order of images that lack tem-

poral ordering. Basha et al. [3] proposed to detect static

and dynamic features and then conduct an epipolar geom-

etry based approach to find temporally ordered image se-

quences. Feature based methods including motion signa-

ture based synchronization [7] have been explored as well.

Wang et al. [27] jointly utilized image and text information

to generate image storylines. Also, works have addressed
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using geolocation and path cues [5, 13] to generate image

sequences illustrating the tourist’s experience in temporal

order. Apart from temporally aligning photo sequences,

Averbuch-Elor et al. [2] introduced a spectral technique for

recovering the spatial order of photos taken by a group of

people around the same event. Works on storyline graphs

have been introduced for large-scale web images [15], per-

sonal photos [22], and outdoor activity classes [14]. Image

sequencing and storyline graphs aim to identify the tempo-

ral ordering of images. We aim to instill a sense of story

into our proposed video-story generation method.

3. Approach - Composing the Video-Story

Our approach addresses the problem of making a video-

story out of multiple video clips. It is our job to find the

best way to order these clips such that the resulting video-

story (1) follows a story plot structure, and (2) is coherent

in presenting the subsequent clips one-by-one.

Consider we are given N video clips denoted as C =
{c1, ..., cN}. Let s ⊂ P denote an ordered sequence, where

P denotes the set of all possible permutations of C. Our

goal is to find the optimally ordered sequence:

s∗ = argmin
s⊂P

Q(s), (1)

where Q(s) is an objective function:

Q(s) = αP(s) + (1− α)D(s). (2)

The Plot Penalty term P(s) denotes the penalty given to

a candidate sequence of clips depending on how poorly it is

structured as a story. The Dissimilarity term D(s) denotes

the dissimilarity present in adjacent clips given to a candi-

date sequence of clips. We provide detailed explanations of

these terms in Sec. 3.1.

Directly selecting the best permutation of clips through

an exhaustive search is NP -hard. Thus, we need an effi-

cient algorithm to find the optimal solution. We introduce a

novel Branch-and-Bound algorithm that efficiently finds the

best video-story while guaranteeing global optimum. De-

tailed explanations are provided in Sec. 3.2.

3.1. Story Scores for Candidate Video­Stories

We provide detailed illustrations on the terms introduced

in Eq. (2) and their importance in evaluating the story qual-

ity of a candidate video-story sequence.

Plot dynamics of the overall video. The Plot Penalty

term P(s) indicates how much a candidate sequence of

video clips represents a poor story structure and is crucial

to the novelty of our approach. Specifically, this term pe-

nalizes for not following the general story plot as illustrated

in Fig. 1. Thus, a good video-story will in general contain

the essential aspects of a story plot such as the presence of a

(a) Temporal story segment

(b) Proposed story segment

Figure 2: Plot dynamics. This figure shows story segments taken

from (a) the original temporal sequence and (b) the video-story

generated by our proposed method. In these video-stories, clips

(shown as snapshots in the top rows) transition from left to right.

The heat map (shown below each snapshot) shows the accumula-

tion of dense optical flow magnitudes. Our proposed story reflects

smooth rising dynamics with coherent scenes whereas the original

sequence shows orderless dynamics with inconsistent scenes.

gradual rising action phase, a climax and a resolution. Con-

sequently, a video-story that follows the general plot struc-

ture will return a small Plot Penalty score.

Now, the components of a plot (i.e. exposition, rising

action, climax, and resolution) are based on the notion of

amount of activity. In other words, plot components are

structured depending on how dynamic each scenes are. We

define a dynamicity measure based on dense optical flow

features [18] to represent the amount of activity present in

a video clip. Recent methods using dense optical flow have

shown efficient video representation for action recognition

tasks and have achieved state-of-the-art results. Given a

video clip cl with length L(cl) and displacement vectors

∆Tt = Tt+1 − Tt at time t, we define the dynamicity as

D(cl) =

∑L(cl)
j=1 ‖∆Tj‖2

L(cl)
. (3)

This measure represents the amount of activity contained in

clip cl normalized by the clip length L(cl).
Camera motion caused by the user however cannot be

thought of as a dynamic component of the clip, because

it usually has little to do with the actual dynamics of the

scene depicted. Thus, we preprocess the displacement vec-

tors ∆Tt by taking the camera motion into account. To es-

timate camera motion, we extract SURF [4] descriptors in

each frame and compute homographies with RANSAC [9]

for consecutive frames. We use the homographies to can-

cel out the camera motion to produce displacement vectors

∆Tt containing pure dynamics of the scene.

Based on the dynamicity measure, given a sequence s

with N video clips, we define the Plot Penalty term P(s) as
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P(s) =
N−1
∑

i=1

P̃ (si, si+1), (4)

where

P̃ (si, si+1) =

{

D(si)−D(si+1) if D(si+1) < D(si),

0 if D(si+1) ≥ D(si).
(5)

For clarification, the P(s) term penalizes candidate video-

stories on decreasing dynamicity of adjacent clip pairs. This

simple formulation in fact provides an elegant representa-

tion of all component properties of a story plot. First of all,

the exposition (first clip of the video-story) would tend to

start off with low dynamics as suspected. Also, the over-

all video-story would most likely follow the rising action

phase due to how the penalty measure P̃ (si, si+1) is de-

fined. Consequently, the climax may come after the rising

action phase. Since most stories typically end with higher

dynamics than its exposition, this formulation implicitly al-

lows the resolution to end with high dynamics.

Furthermore, notice that the magnitude of penalization is

equal to the dynamicity difference. This is backed with the

intuition that a significant drop in dynamics must be penal-

ized more than a subtle drop in dynamics. Fig. 2 shows a

comparison of plot dynamics of a temporally ordered video-

story segment and our proposed video-story segment.

Coherency of story contents. The Dissimilarity term

D(s) indicates how much a candidate sequence of video

clips contains dissimilar clips adjacent to each other. A

good story usually reflects smooth transitions of events. For

instance, a scene of the ocean would likely be followed by

other scenes showing the ocean rather than a cascade of un-

related scenes. In this sense, a video-story that presents bet-

ter coherency in contents with smoother transitions between

clips will return a smaller Dissimilarity score.

We first introduce how to measure dissimilarity between

two clips by modifying the bidirectional similarity [24]

measure which is based on a patch matching algorithm. We

choose to define our dissimilarity measure in this way in

order to take advantage of its property: robustness to local

changes between video frames. Given two clips c1 and c2,

let G and H each denote a set of patches from c1 and c2,

respectively. The dissimilarity measure is defined as

d(c1, c2) =
1

n1

∑

G∈c1

min
H∈c2

Dist(G,H)+

1

n2

∑

H∈c2

min
G∈c1

Dist(G,H),

(6)

where Dist(G,H) is obtained by the Sum of Squared Dis-

tance (SSD), measured in CIE L∗a∗b∗ color space and nor-

(a) Bidirectional similarity

(b) Bidirectional similarity with one-to-one correspondence

Figure 3: Effect of one-to-one correspondence requirement.

This figure shows top three similar (smallest dissimilarity) clips

of a reference clip (leftmost column) using (a) the original bidi-

rectional similarity and (b) the bidirectional similarity with one-

to-one correspondence requirement. Notice that the addition of

this requirement emphasizes global similarity between clips as a

whole rather than local similarity.

malized by the patch size. The original implementation of

the dissimilarity measure allows more than one patch from a

clip to correspond to the same patch in the other clip. How-

ever, upon computing the dissimilarity measure, we enforce

a one-to-one correspondence requirement on sets G and H .

That is, each and every patch taken from clips c1 and c2
must have exclusive correspondences. Consequently, this

imposes an emphasis on global dissimilarity between clips

as a whole. The original bidirectional similarity is mainly

used in spacial and/or temporal summarization of images

or videos. That is, bidirectional similarity is used to make

smaller and/or shorter versions of an input image or video,

which naturally emphasizes the need to find local similar-

ities. Since our approach requires to find the overall sim-

ilarity (or dissimilarity) across clips, an emphasis on find-

ing the global similarity better fits our needs, and thus the

one-to-one correspondence requirement is enforced. An il-

lustration of this aspect is shown in Fig. 3.

Given N video clips and a clip sequence s, we define the

Dissimilarity term D(s) as follows.

D(s) =

N−1
∑

i=1

d(si, si+1), (7)

which is simply the sum of all dissimilarity measures be-

tween adjacent clips. This term accounts for the smooth

scene transitions illustrated in Fig. 1 and Fig. 2(b).

3.2. Searching for the Optimal Video­Story

Exhaustively searching for the optimal story sequence

from all possible permutations of video clips is NP -hard.

In this section, we provide an efficient way to find the global

optimum based on the Branch-and-Bound algorithm [12]

with breadth-first-search. We start by a brief introduction
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Algorithm 1 Lower-bound score of a subspace

1: Input: Subspace In ∈ N
N

2: Compute P̂ =
∑n−1

i=1
P̃ (Ini , I

n
i+1)

3: Compute D̂ =
∑n−1

i=1
d(Ini , I

n
i+1)

4: if n < N then

5: Assign previously used elements of D̃ as infinity

6: m = min(D̃)
7: D̂ = D̂ + (N − n)m
8: end if

9: Lower-bound score: Lb = αP̂ + (1− α)D̂

Algorithm 2 Upper-bound score of a subspace

1: Input: Subspace In ∈ N
N

2: Let ŝ denote a sequence in subspace In

where ŝ1:n = In1:n
3: if n < N then

4: for j = n+ 1 : N do

5: P̃
j
= [P̃ (̂sj , c1), · · · , P̃ (̂sj , cN )]

6: dj = [d(̂sj , c1), · · · , d(̂sj , cN )]
7: Assign elements at clip indices already taken as infinity

8: q = αP̃
j
+ (1− α)dj

9: ŝj+1 = argmini qi

10: end for

11: end if

12: Upper-bound score: Ub = αP (̂s) + (1− α)D(̂s)

to Branch-and-Bound, then illustrate how the bounds are

defined, and finally present our search procedure.

Introduction to Branch-and-Bound. The basic idea of

Branch-and-Bound (BnB) is to divide the search space into

smaller subspaces and discard subspaces that cannot con-

tain a better solution than the current one. The discard de-

cision is made by a rejection test based on the bounds of

the subspace. If a subspace passes the rejection test, then

it is again partitioned into smaller subspaces. The size of

the subspaces iteratively decreases and the current solu-

tion converges to the global optimum. It is important to

define tight intervals between the lower and upper-bounds

because it affects the algorithm speed. If the intervals are

tighter, early rejections of subspaces will occur more fre-

quently. Thus, the number of branches (subspace subdi-

visions) are reduced, leading to a faster search procedure.

In order to apply BnB to our problem, we specify the sub-

space subdivision scheme (i.e. how to divide subspaces into

smaller subspaces), and define how to obtain the lower and

upper-bounds of a subspace. This leads us to develop the

first video-story search algorithm whose global optimality

is guaranteed.

Defining lower and upper bounds. Defining how the

bounds are computed for a subspace is important since it

forms the basis of the rejection test which affects the over-

all algorithm efficiency. Before we explain how the bounds

are defined, we briefly describe how the subspace branches

are defined. Given N video clips, we define the search sub-

space In ∈ N
N in the form of a sequence of natural num-

bers with length N . Let the first n entries of subspace In

be specified by clip indices, then the remaining entries are

left blank to define the search area of the subspace. With

each branching, the next entry (i.e. (n + 1)-th entry) of the

preceding subspace branch In is specified by a clip index

(i.e. generating I(n+1)), and consequently converges itera-

tively to a single optimum sequence of clips (i.e. our best

video-story sequence).

For a subspace In, where the first n entries are fixed,

the lower-bound of a subspace is acquired by first obtaining

the lower-bound Plot Penalty score P̂ by Eq. (4) only up to

the n-th entry. The lower-bound Dissimilarity score D̂ is

partially obtained by Eq. (7) up to the n-th entry, and then

must be completed as described as follows. Here, let us

define the dissimilarity matrix D̃ as the symmetric matrix

where its elements are the dissimilarity measures between

clip pairs as

D̃ =











d(c1, c1) d(c1, c2) · · · d(c1, cN )
d(c2, c1) d(c2, c2) · · · d(c2, cN )

...
...

. . .
...

d(cN , c1) d(cN , c2) · · · d(cN , cN )











. (8)

For each of the remaining entries after the n-th entry in

In, we add the minimum element of D̃ excluding the el-

ements already used to partially calculate D̃. The lower-

bound score is obtained by a weighted sum of P̂ and D̂ in

the same way as described in Eq. (2). A detailed algorithm

for computing the lower-bound score is shown in Alg. 1.

Notice that no sequence in the subspace In can possibly

have a score lower than the lower-bound of its subspace,

which indicates that the lower-bound definition is suitable.

The upper-bound score of a subspace can be obtained by

finding an arbitrary sequence within the subspace and tak-

ing its score. We can define the upper-bound score as such

because the score of any sequence within a subspace is al-

ways greater than or equal to the lowest score possible in

that subspace. Although selecting any sequence at random

would suffice as the upper-bound, we would like to make a

tight interval. Thus, we would like to find a sequence with

a low score, but would also like to find it fast (for suffi-

cient algorithm speed). We define our upper-bound as the

score of a sequence in the subspace found by a sequential

search method. For a subspace In where the first n entries

are fixed, we define a sequence ŝ with the same n entries.

We assign the next entry (i.e. (n + 1)-th entry) with a clip

index returning the lowest score, and repeat until the se-

quence ŝ is complete. This is done by defining vectors P̃
j

and dj whose elements represent all pairwise penalty mea-

sures and dissimilarity measures with ŝj respectively, where
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Algorithm 3 Branch-and-Bound for optimal video-story

1: Input: Search space I0 ∈ N
N

(i.e. Initial search space with no fixed entry)

2: for n = 0 : N − 1 do

3: Subdivide In by assigning remaining clip indices to the

(n+ 1)-th entry

4: Store subdivided subspaces in LI

5: Compute lower and upper-bound scores: Lb and Ub, and

store in Lb

6: Ub∗ = minUb
∈ Lb

7: Remove all subdivided subspaces from LI whose Lb >

Ub∗

8: end for

9: Return: IN (i.e. The subspace IN last to remain in LI is

the only remaining subspace and represents the global optimal

video-story sequence s∗)

ŝj is the j-th element of ŝ. Obviously, already selected clip

indices cannot be selected again. The upper-bound score is

obtained by a weighted sum of P(ŝ) and D(ŝ) in the same

way as Eq. (2). A detailed algorithm is shown in Alg. 2.

Search procedure. An example illustration of the search

procedure is provided in Fig. 4. Ultimately, the goal is to

find the global optimal story sequence s∗ ∈ N
N from a

search space I0 ∈ N
N (which has no entries fixed with

video clip indices). The BnB algorithm iteratively subdi-

vides the search space by fixing the entries of I0 with clip

indices one-by-one. The subdivided subspaces are stored in

the subspace list LI . Also in each iteration, the associated

bounds are computed and stored in list Lb. Since our prob-

lem is a minimization problem, the rejection test decides to

discard a subspace when its corresponding lower bound is

greater than the current minimum upper bound. We are safe

to remove these subspaces from LI since it signifies that the

best solutions drawn from these subspaces are worse than

any solution drawn from the current best subspace, and thus

the optimal solution cannot be within these subspaces. The

procedure stops when the last entry (i.e. N -th entry) is as-

signed leaving only one subspace IN which represents the

global optimal story sequence s∗. Notice that the lower and

upper-bounds of IN is equal to each other and thus signifies

the algorithm’s convergence to the optimal solution. The

detailed algorithm of the optimal video-story search proce-

dure is shown in Alg. 3.

4. Experimental Results

We now analyze and evaluate our method. Since eval-

uating the quality of video-stories is a subjective task, we

conduct extensive user studies to quantitatively evaluate our

method. We provide detailed explanations on the evaluation

settings, evaluation tasks via user studies, and quantitative

and qualitative results.

Figure 4: Branch-and-Bound search procedure. This shows an

example illustration of BnB regarding subspaces with 3 fixed en-

tries. The subspace I32 has a lower-bound larger than the min-

imum upper-bound, thus the subspace I32 is removed from the

subspace list LI . This means that any story sequence starting with

the clip indices (1, 2, 4) cannot be the optimal story sequence.

Figure 5: Convergence of bounds and search space volume.

Dataset. We collect 23 user-made video-stories from

YouTube. Each video-story consists of 8-12 video clips

which are 2-3 seconds long. This gives a total of 236 video

clips for our dataset. The contents of our dataset include

many activities (e.g. sightseeing, skateboarding, walking,

surfing, shopping, driving, swimming, etc.) at various loca-

tions (e.g. river, park, ocean, streets, mall, landmarks, mu-

seum, marketplace, garden, beach, etc.).

Methods for comparison. We provide evaluation results

on the following methods.

• Plot Analysis refers to our method described in Sec. 3.

The weight parameter α in Eq. (2) is set to 0.5 in order to

equally emphasize plot dynamics and coherency of story

contents. We stress that this parameter was not tuned, al-

though tuning this parameter via cross-validation could im-

prove the results. The resulting video-story is found by

the BnB algorithm and Fig. 5 shows an illustration of the

lower and upper-bound convergence and search space vol-

ume convergence to prove that the bounds are valid.

• Shortest-path: We construct a graph connecting all

pairs of clips weighted by the dissimilarity measures. We

select the shortest-path sequence from the graph. It is nat-

ural to think that smooth transitions with similar clips next

to each are enough to make a sufficient video-story. There-
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Figure 6: Pairwise preference scores. The scores represent pairwise preference scores normalized by the number of subjects. The

leftmost bar set shows the average preference scores. The labels indicate the contents of the video set. Since the preferences are recorded

in a pairwise manner, the score should be at least higher than 1 to validate that our method is superior to other baselines.

fore, this baseline provides a comparison for our method

to verify whether coherency is enough for sufficient video-

story composition or if plot analysis (i.e. coherency as well

as plot dynamics) is indeed superior.

• Temporal: This baseline is the original video-story

composed by the actual user. The separate video clips are

taken in temporal order and sequenced together to make a

video-story. This baseline is used to verify whether simply

ordering clips temporally is indeed the best way to compose

a video-story.

4.1. Evaluation on Overall Video­Story Quality

This task involves showing subjects the video-stories

each generated from the aforementioned baselines. For each

set of video-stories, the contents are identical, but the sense

of story differs according to each baseline. We ask the sub-

jects to evaluate the sense of story present in the video-

stories. The evaluation is done in the form of selecting the

better story in a pairwise manner. The selected video-story

in the pairwise comparison is given 1 point, thus the maxi-

mum score a video-story can get is 2 in a video set. We do

not reveal which is which, and the presentation order of the

video-stories is random.

Since our dataset consists of 23 videos, there are a to-

tal of 23 video sets. A total of 30 subjects (age range from

21-55 years old, and about half have no background in com-

puter vision) participated in this task and were asked to eval-

uate at least 10 video sets. This gives at least 30 (subjects)

× 10 (video sets) × 3 (pairwise comparisons) = 900 tasks

done by our subjects. We estimate each pairwise compari-

son to take 3 minutes to complete, resulting in at least 45

hours of user study. To the best of our knowledge, this is

one of the most extensive user studies carried out in video

composition evaluation. We would like to note that simi-

lar evaluation structures are performed in the data mining

community (e.g. text analysis [23]) and the computer vision

community [15, 20] implying that the evaluation we per-

form is not designed to conveniently return desired results.

Figure 7: Component-wise comparison results. The curves rep-

resent average ROC curves for our method and baselines on story

component evaluation.

Fig. 6 shows the results of the pairwise preference test of

our method and baselines.

We find that our method composes video-stories with

better sense of story when the contents have at least the

slightest relevance between constituent video clips. For ex-

ample, the video set WU involves walking in the city. Each

video clip seems to be taken independently without any con-

sideration of a story structure, but still contains the slight-

est relevance among them due to the same urban context.

Our plot analysis approach manages to group similar clips

into smooth story transitions and arrange the clip dynamics

into a plot structure. The shortest-path method on the other

hand, sufficiently links individual video clips with similar

contents, however fails to compose a story plot. Lastly, the

temporal baseline shows inconsistency in quality of video-

stories. This suggests that composing video-stories in tem-

poral order does not always guarantee high quality stories.

In some cases involving uneventful or uncorrelated contents

(e.g. video set FM: uncorrelated scenes and activities in a

marketplace), our method shows less advantage over other

baselines. Since the order of presenting uneventful or un-

correlated video clips does not greatly affect the story, it is

reflected in our evaluation results.
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(a) Plot Analysis video-story

(b) Shortest-path video-story

(c) Temporal video-story

Figure 8: Video-story example result. (a) Our Plot Analysis, (b) Shortest-path, and (c) Temporal baseline. The heat map shown below

each clip snapshot is the accumulation of dense optical flow magnitudes representing the overall dynamics of each clip.

4.2. Evaluation via Story Components

In this task we evaluate video-stories by its constituent

components. Since we have shown the overall evaluation

of video-stories as a whole in Sec. 4.1, we now evaluate on

a smaller scale: constituent story components in a video-

story. The idea is to obtain ground truth video-story se-

quences and evaluate our method and baselines with them

in a component-wise manner. However, it is difficult to ob-

tain ground truth sequences since it is highly subjective. To

avoid this difficulty, we perform an experiment as follows.

We show 4 workers all of the clips in each of the 23

video sets (total of 236 clips) and have them identify which

two clips should be close together when composing a video-

story for every video set. Instead of asking the workers to

indicate a whole story sequence, asking to identify separate

pairs of clips have several advantages. (1) It lessens the task

burden on the workers. (2) Identifying pairs is less prone to

subjectiveness and sets of pairs contain more concentrated

information than a whole sequence. (3) It returns reliable

ground truth information easier to statistically analyze.

We take the union of the output returned by the work-

ers as ground truth. By thresholding the distance between

clips in the sequence, we obtain average ROC curves for

our method and baselines shown in Fig. 7. Once again,

we would like to point out that similar experiments are per-

formed on various works in the data mining [23] and com-

puter vision community [15, 20] to emphasize that the eval-

uations are fair.

Qualitative result example. Fig. 8 shows example video-

stories composed by our method and other baselines. No-

tice how our video-story starts with a low dynamic clip as

the exposition. The clips that follow represent the gradual

rising action phase leading to a climax. The video-story

ends with a dynamic clip as the resolution. The contents of

our result show coherency as well, grouping similar scenes

together. On the contrary, the video-story composed via the

shortest-path method lacks structure in plot dynamics. The

original temporally ordered video-story not only lacks plot

structure, but also content coherency of adjacent clips.

5. Conclusion

Our work deals with composing a story out of multiple

short videos, namely a video-story. For this goal, we have

defined and developed the plot analysis approach. Specifi-

cally, we have shown how to incorporate plot dynamics into

a sequence of video clips, while also preserving content

coherency. This was done by developing a novel Branch-

and-Bound algorithm guaranteeing the globally optimal so-

lution. Our extensive user study verifies the effectiveness

of our approach. In the future, it would be interesting to

take semantic information of the video clips into account for

story composition. Now people can take video clips when

they feel like it, without thinking of content order, and still

expect a well-structured video-story in the end.
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