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Abstract

In recent years, sensors capable of measuring both color

and depth information have become increasingly popular.

Despite the abundance of colored point set data, state-

of-the-art probabilistic registration techniques ignore the

available color information. In this paper, we propose a

probabilistic point set registration framework that exploits

available color information associated with the points. Our

method is based on a model of the joint distribution of

3D-point observations and their color information. The

proposed model captures discriminative color information,

while being computationally efficient. We derive an EM al-

gorithm for jointly estimating the model parameters and the

relative transformations.

Comprehensive experiments are performed on the Stan-

ford Lounge dataset, captured by an RGB-D camera, and

two point sets captured by a Lidar sensor. Our results

demonstrate a significant gain in robustness and accuracy

when incorporating color information. On the Stanford

Lounge dataset, our approach achieves a relative reduction

of the failure rate by 78% compared to the baseline. Fur-

thermore, our proposed model outperforms standard strate-

gies for combining color and 3D-point information, leading

to state-of-the-art results.

1. Introduction

3D-point set registration is a classical computer vision

problem with important applications. Generally, the points

originate from measurements of sensors, such as time-of-

flight cameras and laser range scanners. The problem is to

register observed point sets from the same scene by finding

their relative geometric transformations. One class of ap-

proaches [2, 16], based on the Iterative Closest Point (ICP)

[1], iteratively assumes pairwise correspondences and then

finds the transformation by distance minimization. Alterna-

tively, probabilistic methods [5, 7, 9, 14] model the distribu-

tion of points using e.g. Gaussian Mixture Models (GMMs).

Recently, probabilistic approaches demonstrated promis-

ing results for point set registration [5, 7]. The im-

(a) First set.

(b) Second set.

(c) Baseline registration [5]. (d) Our color-based registration.

Figure 1. Registration of the two colored point sets (a) and (b),

of an indoor scene captured by a Lidar. The baseline GMM-based

method (c) fails to register the two point sets due to the large initial

rotation error of 90 degrees. Our method accurately registers the

two sets (d), by exploiting the available color information.

proved performance in probabilistic methods is achieved

by modeling the distribution of points as a density func-

tion. The probabilistic approaches can be further catego-

rized into correlation-based and Expectation Maximization

(EM) based methods. The correlation-based approaches

[9, 17] estimate the transformation parameters by maximiz-

ing a similarity measure between the density models of the

two point sets. Instead, the EM-based methods simultane-

ously estimate the density model and the transformation pa-

rameters [5, 7, 14]. In this paper, we explore probabilistic

models for EM-based colored point set registration.

State-of-the-art probabilistic techniques [5, 7, 14] rely on

the distribution of points in 3D-space, while ignoring addi-

tional information, such as color, for point set registration.

On the other hand, the increased availability of cheap RGB-

D cameras has triggered the use of colored 3D-point sets

in many computer vision applications, including 3D object

recognition [4], scene reconstruction [3] and robotics [6].

Besides RGB-D cameras, many laser range scanners also

capture RGB or intensity information. Additionally, col-
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ored point sets are produced by stereo cameras and ordinary

cameras by using structure from motion. In this paper, we

investigate the problem of incorporating color information

for probabilistic point set registration, regardless of the sen-

sor used for capturing the data.

When incorporating color information in probabilistic

point set registration, the main objective is to find a suitable

probability density model of the joint observation space.

The joint space consists of the 3D-point observations and

their associated color information. Color information can

be incorporated into a probabilistic point set model in two

standard ways. (i) A first approach is to directly intro-

duce joint mixture components in the complete observation

space. This model requires large amounts of data due to

the high dimensionality of the joint space, leading to a high

computational cost. (ii) A second approach is to assume

stochastic independence between points and color, which

enables separable modeling of both spaces. However, this

assumption ignores the crucial information about the spatial

dependence of color. The aforementioned shortcomings of

both fusion approaches motivate us to investigate alternative

probabilistic models for incorporating color information.

Contributions: In this paper, we propose a color-based

probabilistic framework for point set registration. Our

model combines the advantages of (i) and (ii), by assuming

conditional independence between the location of a point

and its color value, given the spatial mixture component.

In our model, each spatial component also contains a non-

parametric density estimator of the local color distribution.

We derive an efficient EM algorithm for joint estimation

of the mixture and the transformation parameters. Our ap-

proach is generic and can be used to integrate other invariant

features, such as curvature and local shape.

Comprehensive experiments are performed on the Stan-

ford Lounge dataset [19] containing 3000 RGB-D frames

with ground-truth poses. We also perform experiments on

two colored point sets captured by a Lidar: one indoor scene

and one outdoor scene [18]. The results clearly demonstrate

that our color-based registration significantly improves the

baseline method. We further show that the proposed color-

based registration method outperforms standard color ex-

tensions, leading to state-of-the-art performance. Figure 1

shows registration results on the indoor Lidar dataset, using

the baseline [5] and our color-based registration model.

2. Related Work

Initially, most point set registration methods [2, 16] were

based on the classical ICP [1] algorithm. The ICP-based

approaches alternate between assuming point-to-point cor-

respondences between the two sets and finding the optimal

transformation parameters. The standard ICP [1] is known

to require a good initialization, since it is prone to get stuck

in local minima. Several methods [2, 15, 16] have been pro-

posed to tackle this robustness issue.

Probabilistic registration techniques employ, e.g., Gaus-

sian mixtures to model the distribution of points. In corre-

lation based probabilistic approaches [9, 17], the two point

sets are modeled separately in a first step. A similarity mea-

sure between the density models, e.g. the KL divergence, is

then maximized with respect to the transformation parame-

ters. However, these methods lead to nonlinear optimization

problems with non-convex constraints. To avoid complex

optimization problems, several recent methods [5, 7, 14] si-

multaneously estimate the density model and the registra-

tion parameters in an EM-based framework. Among these

methods, the recent Joint Registration of Multiple Point Sets

(JRMPS) [5] models all involved point sets as transformed

realizations of a single common GMM. Compared to previ-

ous EM-based methods [7, 14], JRMPS does not constrain

the GMM centroids to the points in a particular set. This

further enables a joint registration of multiple point sets.

The use of color information for point set registration has

been investigated in previous works [8, 11, 10, 12]. Huhle et

al. [8] propose a kernel-based extension to the normal dis-

tributions transform, for aligning colored point sets. Most

approaches [10, 11, 12] aim at augmenting ICP-based meth-

ods [1, 16] with color. In these approaches, a metric is intro-

duced in a joint point-color space, to find correspondences

in each iteration. A drawback of these ICP variants is that

the metric relies on a data dependent parameter that controls

the trade-off between spatial distance and color difference.

Different to these methods, we incorporate color informa-

tion in a probabilistic registration framework. The registra-

tion is performed using an EM-based maximum likelihood

estimation. Next, we describe the baseline probabilistic reg-

istration framework.

3. Joint Registration of Point Sets

We base our registration framework on the JRMPS

[5] method, since it has shown to provide improved per-

formance compared to previous GMM based approaches

[7, 14]. Contrary to these methods, JRMPS assumes both

sets to be transformed realizations of one reference GMM.

This avoids the underlying asymmetric assumption of us-

ing one of the sets as a reference model in the registration

[7, 14]. Further, the JRMPS has the advantage of naturally

generalizing to joint registration of multiple sets.

3.1. Point Set Observation Model

In the problem of joint registration of multiple point sets,

the observations consist of 3D-points in M different views

of the same scene. The aim is then to find the transforma-

tion of each set to a common reference coordinate system,

called the reference frame. All observations of 3D-points

are assumed to originate from the same spatial distribution

V ∼ pV, representing the entire scene. Here, V ∈ R
3 is a
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random variable (r.v.) of a point in the reference frame, and

pV is the probability density function (p.d.f.) of V.

Let Xij ∈ R
3 be the r.v. of the j:th observed point in

view i ∈ {1, . . . ,M} and let xij be its observed value. Ob-

servations in view i are related to the reference frame by

the unknown rigid transformation φi(x) = Rix + ti, such

that φi(Xij) ∼ pV. The transformed observations φi(Xij)
thus have the distribution pV in the reference frame. Con-

sequently, the p.d.f. of the observation Xij is given by

pXij
(xij) = pV(φi(xij)). To simplify notation, we often

write pXij
(xij) = p(xij).

As described above, the observed points are assumed to

be transformed samples of the distribution pV. The point

distribution pV is modeled as a mixture of Gaussian distri-

butions. Let K be the number of Gaussian components. We

then introduce the discrete latent r.v. Z ∈ {0, . . . ,K} that

assigns the point V to the mixture component Z = k. The

extra 0th component is a uniform distribution that models

the occurrence of outlier points. The joint p.d.f. of V and

Z factorizes as p(v, z) = p(v|z)p(z). For discrete vari-

ables, we use the notation p(Z = k) = pZ(k). The mixture

component weights πk are defined as the prior probabilities

πk = p(Z = k) of the latent variable Z. The conditional

distribution of V given Z = k is then defined as,

p(v|Z = k) =

{

UU (v), k = 0

N (v;µk,Σk), k 6= 0.
(1)

Here, UU denotes a uniform distribution in the convex hull

U ⊂ R
3 of the observations [7]. The multivariate normal

distribution with expectation µ and covariance Σ is denoted

by N (· ;µ,Σ). The point density function pV is obtained

by marginalizing over the latent variable Z,

pV(v) =

K
∑

k=1

πkN (v;µk,Σk) + π0UU (v). (2)

Next, we describe how the above described observation

model is used for point set registration.

3.2. Point Set Registration

The registration is performed by jointly estimating the

transformation and the GMM parameters, in (2), using the

EM algorithm. We denote the set of all observations by

X = {xij}
Ni,M
j=1,i=1 and the collection of corresponding la-

tent variables by Z = {Zij}
Ni,M
j=1,i=1. Here, Ni denotes the

number of observations in point set i. All observations are

assumed to be independent. As in [5], a fix outlier weight

π0 is assumed. The model parameters are summarized as,

Θ =
(

{πk,µk,Σk}
K
k=1, {Ri, ti}

M
i=1

)

. (3)

The point registration is performed by jointly estimating the

parameters Θ from the observed data X . In [5], a Maximum

Likelihood (ML) estimate of Θ is obtained using the Ex-

pectation Maximization (EM) framework. The E-step eval-

uates the conditional expectation of the complete data log-

likelihood log p(X ,Z|Θ). The expectation is taken with re-

spect to the latent variables Z given the observed data X
and the current estimate of the parameters Θ(n),

Q(Θ;Θ(n)) = EZ|X ,Θ(n) [log p(X ,Z|Θ)]

=
∑

Z

p(Z|X ,Θ(n)) log p(X ,Z|Θ) (4)

In the M-step, the aim is to find the optimizer of (4) as

Θ(n+1) = argmaxΘ Q(Θ;Θ(n)). To obtain a closed form

solution, the M-step is divided into two conditional max-

imization (CM) steps [13], where the transformation and

GMM parameters are updated separately [7].

Using the definitions in section 3.1 and the independent

observations assumption, the complete data likelihood is ex-

pressed as p(X ,Z|Θ) =
∏

ij p(xij , zij |Θ), where

p(xij , Zij = k|Θ) = πkN (φi(xij);µk,Σk) , k 6= 0. (5)

The posterior density of the latent variables factorizes as

p(Z|X ,Θ(n)) =
∏

ij p(zij |xij ,Θ
(n)). The E-step then re-

duces to computing the posterior probabilities of the latent

variables α
(n)
ijk

:= p(Zij = k|xij ,Θ
(n)) [5]. Eq. 4 now

simplifies to,

Q(Θ;Θ(n)) =
∑

ijk

α
(n)
ijk log p(xij , Zij = k|Θ). (6)

By applying (5) and ignoring constant terms, (6) can be

rewritten to the equivalent minimization problem,

f(Θ;Θ(n)) =
∑

ij

K
∑

k=1

α
(n)
ijk

(

1

2
log |Σk|

+
1

2
‖Rixij + ti − µk‖

2
Σ−1

k

− log πk

)

. (7)

Here, |Σk| denotes the determinant of Σk and we have de-

fined ‖x‖2
Σ−1

k

= x
TΣ−1

k x. For simplicity, isotropic covari-

ances are assumed Σk = σ2
kI , as in [5].

The parameters Θ are updated in the two CM-steps of the

algorithm. The first CM-step minimizes (7) with respect to

the transformation parameters {Ri, ti}
M
i=1, given the cur-

rent GMM parameters {π
(n−1)
k ,µ

(n−1)
k ,Σ

(n−1)
k }Kk=1. The

second CM-step minimizes (7) with respect to the GMM

parameters given the new {R
(n)
i , t

(n)
i }Mi=1. We refer to [5]

for the closed form solutions of the two CM-steps. Next we

introduce our color based registration technique.

4. Feature Based Point Set Registration

We reformulate the registration problem from section 3

to incorporate feature information associated with each 3D-

point. In this work, we investigate the incorporation of color
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Figure 2. An illustration of our mixture model of the joint point-

color space. The ellipses represent spatial mixture components

p(v|Z = k) in our model. Each spatial component k is associated

with a mixture model in the color space, given by the weights ρkl
(visualized as histograms). This mixture model encodes the color

distribution of points associated with the spatial component k.

information for point set registration. However, our frame-

work is not restricted to color features. It also enables the

use of, e.g., structural features that describe the local shape

or curvature of the point set.

4.1. Feature Based Observation Model

Our framework assumes the observations to consist of

a 3D-point and its associated feature value, e.g. color. Let

Y ∈ Ω denote the r.v. of the feature value associated with

the 3D-point V. Here, Ω is the set of all possible feature

values, called the feature space. For example, if Y is the

color of the 3D-point in normalized HSV coordinates, then

the feature space is the unit cube Ω = [0, 1]3. We assume

observations of points and features to originate from a com-

mon joint distribution (V, Y ) ∼ pV,Y . The aim of this pa-

per is to propose an efficient yet distinctive mixture model

of the joint point-feature density pV,Y . Next, we investigate

three different strategies to construct a mixture model of the

joint point-feature space.

4.1.1 The Direct Approach

A direct generalization of the GMM based registration tech-

nique (section 3), is to introduce joint mixture components

in the point-feature space R3×Ω. In general, let F (v, y; θk)
denote the density function of a mixture component in the

joint space (v, y) ∈ R
3 × Ω. Here, θk denote the param-

eters of the k:th component. A mixture model in the joint

point-feature space is expressed as

pV,Y (v, y) =

K
∑

k=1

πkF (v, y; θk). (8)

However, this strategy of directly introducing joint com-

ponents F (v, y; θk) requires a large amount of data, due to

the exponential growth of volume with the number of di-

mensions (i.e. the curse of dimensionality). This leads to a

higher computational cost.

4.1.2 The Independent Approach

To alleviate the problems induced by the direct strategy (8),

a simple approach is to assume stochastic independence be-

tween 3D-points and feature values. The joint distribution

pV,Y then factorizes as the product of the marginal distribu-

tions for the 3D-points pV and feature values pY , such that

pV,Y = pVpY . This assumption enables the spatial distri-

bution of points pV and the distribution of features pY to

be modeled separately. Let F̃ , θ̃l and π̃l denote the compo-

nents, parameters and weights respectively for the mixture

model of the feature density pY . We denote the number of

feature components by L. The joint distribution can then be

expressed as

pV,Y (v, y) =

K
∑

k=1

L
∑

l=1

πkπ̃lN (v;µk,Σk)F̃ (y; θ̃l). (9)

Here, we have used the GMM presented in section 3.1 for

the spatial distribution pV and ignore the uniform compo-

nent for simplicity. While the independence assumption al-

lows for a separation of the mixture models, it completely

removes information regarding the spatial dependence of

feature values. Such information is crucial for aiding the

registration process.

The aforementioned approaches have major limitations

when incorporating feature information for point set regis-

tration. Next, we describe an approach that combines the

discriminative power of the direct approach with the effi-

ciency of the independent approach.

4.1.3 Our Approach

We propose a mixture model of the joint point-feature space

R
3 × Ω that tackles the drawbacks of the aforementioned

approaches. Contrary to the direct strategy (section 4.1.1),

our method does not require an increased amount of points

to infer the model parameters. We thereby avoid the prob-

lems induced by the higher dimensionality of the observa-

tion space. Additionally, our model accurately captures the

local characteristics in the distribution of features, e.g., how

colors are distributed in the scene. This enables our frame-

work to exploit the underlying discriminative feature infor-

mation associated with each 3D-point.

The proposed mixture model contains a separate feature

distribution for each spatial mixture component (illustrated

in figure 2). In addition to the spatial latent variable Z, we

introduce a second latent r.v. C ∈ {1, . . . , L}. This vari-

able assigns a point-feature pair (V, Y ) to one of the L
mixture components in the feature space Ω. Our model is

based on the conditional independence assumption between

the point V and the feature variables Y,C given the spatial

mixture component Z. This is symbolically expressed as
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V ⊥ Y,C |Z. Our model assumption enables the follow-

ing factorization of the joint p.d.f. of (V, Y, C, Z),

p(v, y, c, z) = p(v, y, c|z)p(z) = p(v|z)p(y, c|z)p(z)

= p(v|z)p(y|c, z)p(c|z)p(z). (10)

The first and fourth factor of (10) do not depend on the fea-

ture information, and are defined in section 3.1 (see (1)).

Each spatial component is given a separate feature dis-

tribution that characterizes the occurrences of feature values

in the vicinity of the component. These distributions are de-

fined by the feature component weights, determined by the

conditional probability of a feature component C = l given

a spatial component Z = k,

p(C = l|Z = k) = ρkl , k 6= 0. (11)

This expression defines the third factor in (10). The feature

mixture weights must satisfy ρkl ≥ 0 and
∑

l ρkl = 1 for

each spatial component k. For the outlier component k = 0,

we assume uniform weights p(C = l|Z = 0) = 1/L.

The second factor p(y|c, z) in (10) is determined by the

mixture components in the feature space. Since the fea-

ture space Ω can be compact or discrete, we do not restrict

our choice to Gaussian distributions. Instead, we consider

arbitrary non-negative functions Bl : Ω → R satisfying
∫

Ω
Bl = 1. We define,

p(y|C = l, Z = k) =

{

UΩ(y), k = 0

Bl(y), k 6= 0.
(12)

As for the spatial mixture components (1), we also use a

uniform component in the feature space for Z = 0 to model

outliers. The integration feature information into the regis-

tration process comes at an increased computational cost. In

order to minimize this cost, we use non-parametric feature

components Bl in our model. This allows the probabili-

ties Bl(yij) to be precomputed and avoids additional costly

maximizations of in the M-step.

The proposed mixture model of the joint space is com-

puted by marginalizing over the latent variables Z,C in (10)

and using the definitions (1), (11) and (12),

pV,Y (v, y) =

K
∑

k=1

L
∑

l=1

πkρklBl(y)N (v;µk,Σk)

+ π0UU (v)UΩ(y). (13)

Our model (13) differs from the direct approach (8) in that

it enables a separation between the point and feature com-

ponents. It also differs from the independent approach (9)

in that the feature component weights ρkl depend on the

spatial component k. Our model thus shares distinctiveness

with the direct approach (8) and efficiency with the inde-

pendent approach (9).

4.2. Registration

Different from the standard GMM based registration

(section 3), our model includes the feature observations

yij and the corresponding latent feature variables Cij .

In our framework, the set of all observations is X =
{(xij , yij)}

Ni,M
j=1,i=1 and the collection of corresponding la-

tent variables is Z = {(Zij , Cij)}
Ni,M
j=1,i=1. The model pa-

rameters have been extended with the feature distribution

weights ρkl in (11), and are given as

Θ =
(

{πk,µk,Σk, ρk1, . . . , ρkL}
K
k=1, {Ri, ti}

M
i=1

)

. (14)

We apply an EM procedure, as described in section 3.2,

to estimate the parameters (14) of our model. The model

assumptions in section 4.1.3 imply the complete data like-

lihood p(X ,Z|Θ) =
∏

ij p(xij , yij , cij , zij |Θ), where the

joint probability of an observation and its latent variables is

p(xij , yij , Cij = l, Zij = k|Θ) =

= πkρklBl(yij)N (φi(xij);µk,Σk) , k 6= 0. (15)

The independence of observations imply the factorization

p(Z|X ,Θ(n)) =
∏

ij p(zij , cij |xij , yij ,Θ
(n)). By apply-

ing (15), the latent posteriors are expressed as,1

α
(n)
ijkl

:= p(Zij = k,Cij = l|xij , yij ,Θ
(n)) = (16)

π
(n)
k ρ

(n)
kl Bl(yij)N

(

φ
(n)
i (xij);µ

(n)
k ,Σ

(n)
k

)

K
∑

q=1

L
∑

r=1
π
(n)
q ρ

(n)
qr Br(yij)N

(

φ
(n)
i (xij);µ

(n)
q ,Σ

(n)
q

)

+ λ

.

Here, the constant in the denominator, originating from the

outlier component is given by λ = π0

m(U)m(Ω) , where m

denotes the reference measure of the space.

For our mixture model, the expected complete data log-

likelihood (4) reduces to,

Q(Θ;Θ(n))=
∑

ijkl

α
(n)
ijkl log p(xij , yij , Cij = l, Zij = k|Θ).

(17)

As in section 3.2, maximization of the expected complete

data log-likelihood (17) can be reformulated as an equiva-

lent minimization problem by applying (15),1

g(Θ;Θ(n)) =
∑

ij

K
∑

k=1

L
∑

l=1

α
(n)
ijkl

(

1

2
log |Σk|

+
1

2
‖Rixij + ti − µk‖

2
Σ−1

k

− log πk − log ρkl

)

. (18)

To simplify the expression (17), we first define the

marginal latent posteriors by summing over the latent fea-

ture variable α
(n)
ijk =

∑

l α
(n)
ijkl. This enables our loss (18) to

be rewritten as,

1See the supplementary material for a detailed derivation.
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Figure 3. Overview of our EM-based registration. The parameters

updated after each step are indicated on the arrow.

g(Θ;Θ(n))= f(Θ;Θ(n))−
∑

ij

K
∑

k=1

L
∑

l=1

α
(n)
ijkl log ρkl. (19)

Here, f(Θ;Θ(n)) is the corresponding loss (7) in the stan-

dard GMM-based registration. This implies that the trans-

formation parameters (Ri, ti) and the spatial mixture pa-

rameters (πk,µk,Σk) can be obtained as in section 3.2.

However, in our method, the latent posteriors given by

(16) are used in the M-step. Different from section 3, our

marginal latent posteriors α
(n)
ijk thus also integrate feature in-

formation into the EM-procedure. Finally, the feature distri-

bution weights are obtained by minimizing the second term

in (19) using Lagrangian multipliers,1

ρ
(n)
kl =

∑

ij α
(n)
ijkl

∑

ij α
(n)
ijk

, k = 1, . . . ,K. (20)

We incorporate the estimation of the feature distribution pa-

rameters (20) in the second CM-step (see section 3.2), along

with the estimation of the other mixture parameters. Fig-

ure 3 shows an overview of our approach.

4.3. Feature Description

Here, we provide a detailed description of how the dis-

tribution of features is modeled, by the selection of feature

mixture components Bl. We restrict our discussion to color

features. In our model, the feature observations are repre-

sented by an HSV triplet y = (yH , yS , yV ) ∈ Ω = [0, 1]3.

In this work, we use second order B-splines to construct the

feature components Bl. However, other functions with sim-

ilar characteristics can also be used. Each component Bl

is a separable function Bl(y) = alB
1
l (y

H)B2
l (y

S)B3
l (y

V ).
In each dimension, the component is given by a scaled and

shifted second order B-spline function Bi
l . The constant al

is a normalization factor given by the condition
∫

Ω
Bl = 1.

The components Bl are placed in a regular grid inside the

unit cube Ω = [0, 1]3. The spacing between the components

is set to 1/Ld along feature dimension d, where Ld denotes

the number of components in dimension d. The total num-

ber of components is hence L =
∏

d Ld.

Similar to GMMs, our method is able to model multi-

modal color distributions. However, our choice of nonpara-

metric mixture components Bl is computationally benefi-

cial. In contrast, employing a standard GMM in the color

space requires computation of the color means and covari-

ances in the EM-procedure. Our approach further allows

the probabilities Bl(yij) to be precomputed for all points.

Figure 4. An RGB-D frame from the Stanford Lounge dataset,

containing the RGB image (left) and the depth (right).

5. Experiments

We perform a comprehensive quantitative and qualitative

evaluations on one RGB-D and two Lidar datasets.

5.1. Details and Parameters

We use the same number of spatial components K =
500, the same outlier ratio π0 = 0.005 and 100 EM-

iterations for both the standard JRMPS and our color-based

versions. We also initialize all methods with the same pa-

rameters for the spatial GMM. The initial means µ
(0)
k are

uniformly sampled on a sphere with the radius equal to the

standard deviation of the point distribution. As in [5], we

fix the spatial component weights πk to uniform, since we

did not observe any improvement in updating them. The

feature component weights ρkl are initialized by uniformly

sampling the L − 1 simplex for each k. Our approach is

implemented in Matlab. Compared to the baseline JRMPS,

our approach marginally increases the computation time (25

to 27 sec. on a single core), for 2000 points per set.

For the direct approach, presented in section 4.1.1, the

joint components are constructed as products of a spa-

tial Gaussian and a feature component F (v, y; θk) =
N (v;µk,Σk)Blk(y). Here, Blk is constructed as in sec-

tion 4.3, and the index lk ∈ {1, . . . , L} is selected ran-

domly for each component k. For the independent approach

(section 4.1.2), we also set the feature components based

on the B-splines presented in section 4.3. That is, we set

F̃ (y; θ̃l) = Bl(y) in (9). For all methods, we use Ld = 4
feature components in each dimension of the HSV space,

which gives L = 64 feature components in total. For both

the direct and independent approaches, we also employ the

additional uniform outlier component (see section 3.1).

Evaluation Criteria: We compute the rotation errors com-

pared to the ground truth by measuring the Frobenius dis-

tance between rotation matrices [5]. The rotation error is

defined as ‖R̂ − R ‖F , where R̂ and R are the estimated

and ground-truth relative rotations between two point sets.

5.2. Stanford Lounge Dataset

We perform experiments on the Stanford Lounge Dataset

[19], consisting of 3000 RGB-D frames taken by a Kinect.

Figure 4 contains an example frame. We use the estimated

poses, provided by the authors, as ground truth.
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Avg. error Std. dev. Failure rate (%)

ICP [1] 4.32 ·10−2 2.53 ·10−2 15.70

GMMReg [9] 6.09 ·10−2 2.31 ·10−2 59.04

Color GICP [11] 1.72 ·10−2 1.75 ·10−2 1.27

JRMPS [5] 1.68 ·10−2 1.24 ·10−2 3.41

Direct Approach 1.91 ·10−2 1.30 ·10−2 2.14

Independent Approach 1.68 ·10−2 1.24 ·10−2 3.41

Our Approach 1.47 ·10−2 1.01 ·10−2 0.74

Table 1. A comparison with other registration methods on the Stan-

ford Lounge dataset. We report the failure rate along with the aver-

age and standard deviation of the inlier rotation errors. Compared

to the baseline JRMPS [5], our approach achieves significantly

better robustness with a relative reduction in the failure rate by

78%. Further, our approach outperforms other color based meth-

ods, including Color GICP [11].

5.2.1 Pairwise Registration

We compare our approach with several state-of-the-art

methods with publicly available code, namely ICP2 [1],

GMMReg [9], Color GICP3 [11], and the baseline JRMPS

[5]. To ensure a significant initial transformation, we per-

form registration between frame number n and n + 5, for

all frames n in the dataset. We randomly downsample the

frames to 10000 points. As a measure of robustness, we

report the failure rate defined as the percentage of rotation

errors larger than 0.1 (approximately 4 degrees). We further

define a registration to be an inlier if the error is smaller than

0.1. We compute the average and standard deviation of the

inlier rotation errors, as measures of accuracy.

The results are reported in Table 1. The standard ICP

obtains inferior performance with a failure rate of 15.7%.

The baseline JRMPS achieves a failure rate of 3.41%. The

Color GICP provides competitive results with a failure rate

of 1.27%. The two standard color extensions, using the in-

dependent and direct approaches, provides the failure rates

3.41% and 2.14% respectively. Our approach achieves the

best results on this dataset, with a failure rate of 0.74%. Ad-

ditionally, our method obtains a significant reduction of the
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Figure 5. An analysis of the number of feature mixture com-

ponents L, on the Stanford Lounge dataset. We compare our

approach with the baseline JRMPS and the two standard color-

extensions. We show the average inlier rotation error (left) and

failure rate (right) for different numbers of components per feature

dimension Ld in the HSV space. Our approach provides consistent

improvements compared to the other probabilistic approaches.

Avg. error Std. dev. Failure rate (%)

JRMPS [5] 0.913 ·10−2 0.636 ·10−2 0.467

Ours 0.768 ·10−2 0.539 ·10−2 0.067

Table 2. A comparison of joint multi-view registration on the Stan-

ford Lounge dataset, in terms of average inlier error, standard de-

viation and failure rate. Our approach significantly reduces the

relative failure rate with 86% compared to JRMPS.
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Figure 6. A joint multi-view registration comparison of our

method with JRMPS [5] on the Stanford Lounge dataset. The re-

call plot (left) shows the fraction of correct registrations over a

range of rotation-error thresholds. The convergence plot (right)

shows the average frame-to-frame inlier rotation error after each

EM iteration. Our method demonstrates superior accuracy and ro-

bustness, while achieving faster convergence.

average rotation error by 12.5% compared to JRMPS.

In figure 5 we investigate the impact of varying the

number of feature components L on the Stanford Lounge

dataset, when using 2000 points per set.4 The left plot shows

the average frame-to-frame rotation error for inliers, when

increasing the number of components per HSV-dimension

from 2 to 7. As a reference, we also include the base-

line JRMPS. The independent approach (section 4.1.2) pro-

vides similar results to JRMPS. The direct approach (sec-

tion 4.1.1), requires a larger amount of data points when

increasing the number of feature components. The perfor-

mance therefore rapidly degrades as the number of feature

components is increased. Contrary to this, our model ben-

efits from increasing the number of feature components,

leading to improved results.

5.2.2 Joint Multi-view Registration

Here, we investigate the performance of our approach for

joint registration of multiple point sets. Alignment of mul-

tiple point sets is important in many applications. Most reg-

istration methods [1, 7, 11] are however limited to pairwise

registration. In these cases, multi-view registration must be

performed either by sequential pair-wise alignment or by

performing a one-versus-all strategy, leading to drift or bi-

ased solutions. Similar to JRMPS [5], our method is able to

jointly register an arbitrary number of point sets. We per-

form joint registration of every 10 consecutive frames, with

2We use the built-in MATLAB implementation of ICP.
3We use the Color GICP implemented in Point Cloud Library.
4Analysis of K and π0 is provided in the supplementary material.
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(a) Lidar Indoor dataset.
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(b) Lidar Outdoor dataset.

Ours JRMPS Color GICP GMMReg ICP

Figure 7. Initialization robustness comparison on the Lidar Indoor

(a) and Outdoor (b) datasets. The left plots show the recall at a

threshold of 0.025. The recall is computed over 100 randomly

sampled rotation axes for each angle. The right plots contain the

total recall over all registrations, plotted with respect to the error

threshold. Compared to previous methods, our approach provides

superior robustness, while maintaining the accuracy.

an interval of 9 frames, on the Stanford Lounge dataset.

This implies that joint multi-view registration is performed

on frame 1-10, 10-19, etc. Table 2 contains the results,

by measuring the frame-to-frame rotation errors. Our color

based model reduces the relative failure rate by 86% com-

pared to the baseline JRMPS. In case of average rotation er-

ror, our approach provides a significant reduction of 15.9%.

Figure 6 shows the recall and convergence rate plots. Re-

call is computed as the fraction of frame-to-frame rotation

errors smaller than a threshold. In figure 6, the recall is plot-

ted over a range of error thresholds. To compare the conver-

gence rate of our method with the baseline JRMPS, we plot

the average frame-to-frame inlier rotation error after each

EM iteration. Our method converges in significantly fewer

iterations, enabling a more efficient registration.

5.3. Lidar Datasets

We experimented with two Lidar datasets, acquired by a

FARO Focus3D. Both consist of more than a million col-

ored 3D points in a single 360 degree view. The Indoor

dataset is visualized in figure 1 and the Outdoor dataset

is visualized in figure 8. We compare with state-of-the-art

methods by evaluating the robustness to initial rotation er-

rors. Registration is performed using initial rotation errors

between 0 and 180 degrees with an interval of 5 degrees.

For every angle, we uniformly sample 100 random rotation

(a) Color GICP. (b) Ours.

Figure 8. Registration of an outdoor scene captured by a Lidar.

Color GICP (a) fails to register the point sets due to a large initial

transformation. Our approach (b) accurately register the point sets.

axes. The point sets are constructed by randomly sampling

points from the single Lidar scan. For each transformation,

we sample two sets with 2000 points each. One of the sets

is then transformed with the rotation defined by its corre-

sponding axis and angle. We plot the recall at a rotation

error threshold of 0.025 (approximately 1 degree) with re-

spect to the initial angle. We also compare the total recall

over all registrations.

Lidar Indoor Dataset: Figure 7a shows the angle robust-

ness comparison in terms of angle recall and total recall.

ICP, GMMreg and Color GICP struggle for initial angles

larger than 60 degrees. The robustness of JRMSP starts to

degrade at an initial angle of 90 degrees. Our approach pro-

vides consistent registrations for angles up to 180 degrees.

Lidar Outdoor Dataset: Figure 7b shows the initial angle

robustness comparison on the Lidar Outdoor dataset. As

in the Indoor dataset, the ICP and Color GICP provides in-

ferior results due to large initial transformations. Our ap-

proach provides consistent improvements compared to the

JRMPS. Figure 8 shows a qualitative comparison between

Color GICP and our approach on this dataset.

6. Conclusions

In this work, we propose a novel probabilistic approach

to incorporate color information for point set registration.

Our method is based on constructing an efficient mixture

model for the joint point-color observation space. An EM

algorithm is then derived to estimate the parameters of the

mixture model and the relative transformations.

Experiments are performed on three challenging

datasets. Our results clearly demonstrate that color infor-

mation improves accuracy and robustness for point set reg-

istration. We show that a careful integration of spatial and

color information is crucial to obtain optimal performance.

Our approach exploits the discriminative color information

associated with each point, while preserving efficiency.
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