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Abstract

In contrast to traditional binocular or multi-view stereo

approaches, the adequately sampled space of observations

in light-field imaging allows, to obtain dense and high qual-

ity depth maps. It also extends capabilities beyond those of

traditional methods. Previously, constant intensity has been

assumed for estimating disparity of orientation in most ap-

proaches to analyze epipolar plane images (EPIs). Here,

we introduce a modified structure tensor approach which

improves depth estimation. This extension also includes a

model of non-constant intensity on EPI manifolds. We de-

rive an approach to estimate high quality depth maps in

luminance-gradient light fields, as well as in color-filtered

light fields. Color-filtered light fields pose particular chal-

lenges due to the fact that structures can change signifi-

cantly in appearance with wavelength and can completely

vanish at some wavelength. We demonstrate solutions to

this challenge and obtain a dense sRGB image reconstruc-

tion in addition to dense depth maps.

1. Introduction

The basis of light-field [8] imaging is the plenoptic func-

tion as introduced in [1]. It represents a multi-dimensional

function describing all the information available of light

reflected from a scene. This comprises the direction and

spectral radiance of the light. To capture light fields, the

plenoptic function is simplified in its dimensionality to a

four dimensional subspace, at times termed the lumigraph.

This light field representation was first introduced in com-

puter graphics by both Gortler et al. [9] and Levoy et

al. [16]. The lumigraph describes the ray path as param-

eterized by two parallel planes. Along the ray path, the

radiance remains constant. That means that all rays leav-

ing a surface point and intersecting the two parallel planes

have equal intensity in the resulting light field. Due to

that constraint, most methods to compute disparities such

as [24, 13, 3, 5, 4] relate only to light fields with this prop-

erty. Even for binocular or multi-view stereo approaches, as

proposed in [17, 12, 6, 20] correspondence between points

is modeled on their having the same intensity value. Thus,

current cameras such as Raytrix [19] and Lytro [7] focus on

reconstruction from input images having similar color in-

formation. A violation, in case of images captured with dif-

ferent color filters or illuminations, needs sophisticated pre-

processing algorithms to adapt the data for the depth esti-

mation, as in the work of Yong et al. [10]. In that approach,

the input image data is mapped to a log-chromaticity color

space to obtain an illumination-independent color space to

find corresponding points in the input data. Thus the di-

rect computation of depth maps on heterogeneous input data

is made in neither multi-view stereo nor current light field

imaging. Hyper-spectral images may be generated using a

single camera with revolving color filters before the objec-

tive, as described in Tominaga [22]. Unfortunately with this

setup, it is not possible to make depth estimates on the un-

derlying scene. In this paper we present heterogeneous light

fields which have changing properties between the captured

images – such as with the presence of illumination gradi-

ents or application of colored filters. We demonstrate that a

modified structure tensor is able to process heterogeneous

light fields. We analyze the limits of both illumination

gradients and randomly illuminated light fields. Further-

more, we show that even for color filtered light fields the

structure tensor approach computes locally highly reliable

depth information which can be merged to a dense depth

map. With this dense depth map it is possible to compute a

hyper-spectral image with respect to a reference view out of

the used color filtered light field. To visualize the obtained

hyper-spectral image we introduce a method to approximate

the sRGB color space from the hyper-spectral information

and display the final RGB reconstruction.

2. Light field disparity estimation

A light field may be defined as a lumigraph [9] having

two parallel planes Π and Ω. While the Ω -plane addresses

the image coordinates (x, y) ∈ Ω of each taken image, the

Π- plane defines the location of the focal points (s, t) ∈ Π
of each camera. A 3D light field as used to capture hetero-
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Figure 1. Shows synthetically generated EPIs. For each orientation (angle) several EPIs are analyzed to determine the overall precision.

The overall precision is computed by using the equation 23.

geneous light fields is given by

L : Ω×Π → R (s, x, y) 7→ L(s, x, y), (1)

where L(s, x, y) denotes the pixel intensity value of the ray

intersecting (x, y) of the image plane and s of the focal

plane (in our case, just a focal line). 2D slices from L are

termed epipolar plane images Σ. Ignoring issues of cal-

ibration and rectification, an epipolar plane image can be

extracted from a 3D light field by setting the y axis to a

fixed value y∗. The addressed epipolar plane image can be

described by the equation

Sy∗ : Σy∗ → R (2)

(x, s) 7→ Sy∗(x, s) := L(s, x, y∗). (3)

To compute disparity maps of a given scene, the struc-

ture tensor is used in determining the underlying orienta-

tions within an EPI. This structure tensor J1, used in Wan-

ner [25], is defined by the equation

J1 = τ ∗







(

∂Ŝ
∂x

)2
∂Ŝ
∂x

· ∂Ŝ
∂s

∂Ŝ
∂s

· ∂Ŝ
∂x

(

∂Ŝ
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=:

(

Jxx Jxs
Jxs Jss

)

(4)

with the abbreviation

Ŝ := σ ∗ S, (5)

where σ defines an inner Gaussian smoothing and τ an outer

Gaussian smoothing applied over each of the structure ten-

sors components. The underlying disparity d is achieve, as

introduced in Wanner et al. [23], by using the structure ten-

sor components. This reduces disparity estimation to the

equation

d = tan

(

1

2
arctan

(

2Jxs
Jxx − Jss

))

. (6)

This formula demonstrates the advantage of the structure

tensor approach. In contrast to binocular or multi-view

stereo, where a correspondence search between several im-

ages is necessary, the structure tensor simply computes the

disparity map by analyzing orientation in epipolar plane im-

ages. Aside from the disparity, a reliability measure is also

computed to indicate confidence of the underlying orienta-

tion This reliability measure is termed coherence c and was

first introduced in Bigun et al. [2]

c :=

√

(Jxx − Jss)2 + 4(Jxs)2

(Jxx + Jss)2
. (7)

3. The modified structure tensor

To derive a robust structure tensor for heterogeneous

light-field processing we analyze the second order structure

tensor introduced by Mülich et al. [18]. This structure ten-

sor is used to separate two transparent overlaying orienta-

tions, as introduced in Wanner et al. [24]. Thus, it already

describes an improved structure tensor that can separate two

different depth layers. In heterogeneous light fields, an il-

lumination gradient or color-filtered images result in EPI

structures with properties similar to two overlaying orienta-

tions. For illumination gradient light fields, the first orienta-

tion describes the scene disparity while the second orienta-

tion indicates the orientation of the illumination gradient. In

color-filtered light fields, we have a similar orientation sep-

aration, unfortunately the a priori knowledge for the second

orientation, while necessary, is not known. For the disparity

estimation of the underlying scene, only the first orientation

is important since this orientation describes the underlying

disparity and, for the depth computation, there is no benefit

in using the second orientation. We use the second order

structure tensor to derive a new structure tensor to process

robust single orientation in heterogeneous light fields with-

out processing the negligible second orientation. Next, we

introduce the canonical-correlation analysis (CCA) to de-

rive a new structure tensor. The CCA is used in statistics

to analyze the correlation between base vectors in a given

evaluation window E. To determine the underlying orien-

tation for a given evaluation window E, we first define the

base vectors which are given by the derivatives of Ŝ. Thus

the base space H becomes

H =

(

E ∗
δ(Ŝ)

δx
,E ∗

δ(Ŝ)

δy

)

=: (Hx, Hy) . (8)

Derived from this, the needed covariance matrix 1 computes

as

C(Hx, Hy) =

(

var(Hx, Hx) cov(Hx, Hy)
cov(Hy, Hx) var(Hy, Hy)

)

(9)

with

var(Hx, Hx) =
1

n

n
∑

i=1

(Hx,i −Hx,µ)
2 (10)

1In the variance and covariance equation, we have a zero mean assump-

tion Hµ = (Hx,µ, Hy,µ) = (0, 0). Thus the nominator of the variance

is n instead of n− 1 not known mean values.
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Figure 2. The first image shows the 3D visualization of the base space of the second order structure tensor. All derivative values of J for

all possible orientations are plotted. The blue lines show the respectively underlying orientation estimation solution. The top view of the

3D graph shows that the 2D projection of the data matches with the single orientation.

and

cov(Hx, Hy) =
1

n

n
∑

i=1

(Hx,i −Hx,µ)(Hy,i −Hy,µ). (11)

where Hx,µ is the computed mean value of all values n ∈
E. The given covariance matrix can also be expressed in

vector notation and becomes

C(Hx, Hy) =
1

n

(

H∗

xHx H∗

xHy

H∗

yHx H∗

yHy

)

=
1

n
H∗H (12)

Next we replace the evaluation window with a Gaussian fil-

ter which transforms the covariance matrix to the already

defined structure tensor as shown in equation 4. With this

method, to derive the structure tensor we analyze the sec-

ond order structure tensor introduced by Mülich et al. [18],

defined by

J = τ ∗

(

JxxJxx JxxJxy JxxJyy

JxxJxy JxyJxy JxyJyy

JxxJyy JxyJyy JyyJyy

)

(13)

with

Jxx =
δ2(σ ∗ S)

δx2
(14)

Jyy =
δ2(σ ∗ S)

δy2
(15)

Jxy =
δ2(σ ∗ S)

δxδy
(16)

where the base space of the second order structure tensor is

given by

H3D =
(

Jxx, Jxy, Jxy
)

. (17)

To analyze the behavior of this structure tensor we gener-

ate, for all possible orientations, synthetic EPIs as shown

in figure 1. For a better understanding of the correlation

between the structure tensor components Jxx, Jxy and Jyy ,

each 3D point of the base space H is plotted in a 3D coor-

dinate system as shown in figure 2. This 3D visualization

shows all 3D points of H3D, for all defined orientations be-

tween −45◦ and 45◦, as red dots. The derived orientation

estimates are plotted as blue lines in the Jxx, Jxy subspace.

As one can see, beside the separation of two transparent

overlaying orientations, a single orientation estimate is en-

coded in the second order structure tensor. A closer look

shows that the single orientation estimation is independent

of the third structure tensor component Jyy . That leads to a

new base space for the single orientation

H2D =
(

Jxx, Jxy
)

, (18)

which results by using the introduced procedure to a struc-

ture tensor representation defined by

J2 = τ ∗

(

JxxJxx JxxJxy
JxxJxy JxyJxy

)

. (19)

The shape of this structure tensor is similar to the first intro-

duced structure tensor from equation 4. The only difference

is an additional derivative filtering in the x direction of each

component. Taking this into account, we select a derivative

filter with (2R−1) elements. The advantage of an odd sym-

metry filter, like 1

2
[−1 0 1], is shown by its transfer function

as describe by Jähne [11]. Thus, the transfer function for

the smallest possible derivative filter (R = 2) becomes

1

2
[−1 0 1] s ❝ cos(πk̂) (20)

where k̂ ≤ 1 denotes the normalized wave number. As one

can see, this filter not only attenuates low frequencies but

also high frequencies. With this understanding, the usage of

an inner Gaussian filter becomes obsolete, because its main

purpose was for anti-aliasing, noise removal and value aver-

aging. All of this, aside from the averaging, is now done by
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Figure 3. This EPI has a linear illumination gradient in vertical direction. The first row of the shown EPI related to the first captured

image of the heterogeneous light field while the last row is related to the last captured image. As one can see increases the illumination

continuously. The red line shows the position where the shown EPI is extracted.

the additional derivative filter. The averaging is transferred

to the outer Gaussian filter, which has negligible effect on

its value, and its shape doesn’t change by the defined offset.

This makes the entire processing not only faster, due to the

removal of the inner Gaussian filter, but also applicable to

heterogeneous light fields. Thus the new derived structure

tensor becomes

J3 = τ ∗







(

∂Ŝ
∂x

)2
∂Ŝ
∂x

· ∂Ŝ
∂s

∂Ŝ
∂s

· ∂Ŝ
∂x

(

∂Ŝ
∂s

)2






=:

(

Ĵxx Ĵxs
Ĵxs Ĵss

)

(21)

with the abbreviation

Ŝ :=
∂S

∂x
. (22)

Next we analyze the resulting precision of the new defined

structure tensor for different derivative filters in contrast to

the traditional structure tensor. Thus we compute the pre-

cision as described in Diebold et al. [5] and generate sev-

eral synthetic EPIs for a discretized angular space between

[−45◦, 45◦] as shown in figure 1. The resulting overall pre-

cision for all evaluated orientations i ∈ N becomes

σd =

√

√

√

√

1

N

N
∑

i

(µi)2 +
4

N

N
∑

i

(σi)2. (23)

where σi defines the standard deviation of the evaluated es-

timations and µi denotes the mean values, to additionally

Derivative Filter σd for J1 σd for J2 σd for J3

Sobel 0.0588 0.0322 0.0315

Scharr 0.0299 0.0082 0.0085

Gaussian 3x3 0.0698 0.0321 0.0326

Table 1. The table shows the resulting precision of the traditional

structure tensor J1 proposed by Wanner [25] in comparison to the

new structure tensor with applied inner Gaussian filter J2, and

without additional inner Gaussian Filter J3. The evaluation is

made for different possible derivative filters of the same shape.

As one can see, the new structure tensor outperforms in the Scharr

filter implementation the traditionally structure tensor by far.

consider appearing systematic error. The results of the pre-

cision analysis are shown in table 1. As one can see, the

achievable precision of the new derived structure tensor J3
increases with respect to the traditional structure tensor J1
which was introduced by Wanner et al. [25]. But the ques-

tion remains of how the precision changes under luminance

gradient light fields.

In luminance-gradient light fields, the illumination changes

from image to image, which is termed illumination gradi-

ent ∆I in the following. To analyze these kinds of hetero-

geneous structures, we apply illumination gradient ∆I to

synthetically rendered light fields as shown in figure 4. An

example of a luminance gradient light field and the resulting

appearance of an EPI are shown in figure 3. To compare the

reliability of the structure tensor for different illumination

�I
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PSNR for illumination gradient light fields
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Ruin (thresh)
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(a)

(b)

Figure 4. Shows the PSNR of the shown scenes (a) for different

applied illumination gradients ∆I . Figure (b) shows the PSNR

applied on the entire disparity map as well as only to coherence

thresholded θ = 0.8 values. For the Buddha scene the traditional

implementation of the structure tensor is shown as black dashed

line. As one can see keeps the PSNR almost constant until a gra-

dient limit is reached. In contrast, the PSNR of the traditional

structure tensor one drops down instantly.
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Figure 5. Shows an example of an linear heterogeneous light field. Each image is captured with a different color filter having a full width

half mean of 10nm. The red line shows the position, where the shown EPI is extracted. In color filtered light fields the intensity changed

in orientation direction with respect to the underlying color content.

gradients we compute for each evaluation scene the PSNR

with respect to the ground truth disparity map. The results

for different ∆I are shown in figure 4. As one can see, the

new structure tensor keeps an almost constant PSNR un-

til the illumination gradient reaches a limiting value. From

there, the PSNR immediately decreases. The entire eval-

uation is made with 16bit images because we must avoid

saturation. In the event of saturated regions, the PSNR will

decrease due to missing orientation information, and not be-

cause of the applied gradient. Thus, 16 bit images allow

isolating the influence of the illumination gradient on the

estimation result. Aside from the PSNR of the improved

structure tensor J3, the PSNR of the traditional structure

tensor J1 of the Buddha scene is shown in figure 4. As

one can directly see, the traditional structure tensor is not

able to process a heterogeneous light field. Furthermore, we

analyze synthetically generated heterogeneous light fields

having random illumination distributions. Here, we ran-

domly shuffle the image related multiplier which was used

to achieve the illumination gradient in the EPI. The results

of this evaluation are shown in figure 6, illustrating the ap-

plicability to acquired light fields. Aside small illumina-

tion variations invariably occur in acquired light fields. Il-

lumination differences appear due to flickering of the light

source or because of varying camera properties such as arise

from exposure jitter across the light field array. Thus, the

designed structure tensor not only improves the estimation

result in homogeneous light fields but also makes it possible

to process heterogeneous light fields.

4. Color-filtered light fields

In this section we introduce color-filtered light fields as

shown in figure 5. Color-filtered light fields are captured

with color filters of different wavelengths so that image of

the light field contains differing color information. The

used band-pass filters have a full-width half-mean of 10 nm

and are uniformly distributed in the color spectrum between

400 nm and 700 nm. This means the color-filtered light field

contains spectral information of the underlying scene. After

generating synthetic color-filtered light fields, we apply the

introduced structure tensor J3 to test scenes such as the rain-

bow textured scene shown in figure 7(a). Due to its breadth

of color, this scene illustrates that the structure tensor is able

to locally estimate the underlying orientation with respect

to the visible wavelength. The local estimation results for

500 nm, 600 nm and 700 nm are seen in figure 7(b).

4.1. Color merge and total variation

It is necessary to merge the local disparity estimations

into a reference view r ∈ Π to obtain a dense disparity

map. Thus the measured disparity needs to be transferred

in the reference view. To select single disparity values, we

use examine coherence order and replace estimations in the

reference view with smaller coherence value. For the entire

merging, we select each row s ∈ Π\r in the EPI and trans-

fer the local disparity estimation of each pixel x onto the

addressed position ys in the reference view r which is given

by the equation

ys = |x+ s · ds(x)| (24)
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Buddha

ConeHead

LivingRoom

Ruin

Buddha (thresh)

ConeHead (thresh)

LivingRoom (thresh)

Ruin (thresh)

Buddha(tranditional)

Figure 6. Illustrates the PSNR for different applied randomly shuf-

fled illuminations defined by an underlying illumination gradient

∆I . The figure shows the PSNR applied on the entire disparity

map as well as only to coherence thresholded θ = 0.8 values. For

the Buddha scene the traditional implementation of the structure

tensor is shown as black dashed line. As one can see keeps the

PSNR quiet constant while the PSNR of the traditional structure

tensor drops down instantly.
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400nm

500nm

600nm

Input data

merged disparity map disparity map after TV
RGB reconstructions

local disparity map

(a)

(b)

(c) (d) (e)

Figure 7. (a) shows the reference image of the light field which become transformed into an color filtered light field. (b) are the local

disparity estimations. (c) shows the merged disparity map out of the local disparity maps. (d) shows the final disparity map after an applied

total variation. (e) shows the final disparity estimation.

where the absolute value ensures only even pixel values are

addressed in the reference view. That is important to con-

sider since two or more local disparity estimates ds(x) at

different positions x can address the same pixel in the ref-

erence view. This can happen when one object occludes

another. The disparity merge can finally be described by

dr(ys) = ds(x) | cs(x) > cr(ys), ds(x) > dr(ys) (25)

where dr and cr are initialized with the local result of the

reference view. Rounding of the applied pixel position in-

troduces error in the resulting disparity map. To minimize

this error we determine the actual shift position x̂ in row s.

The new position becomes

x̂ = ys − s · ds(x). (26)

When the disparity value at the new position ds(x̂) is within

an epsilon environment ǫ with respect to the initial disparity

value ds(x), it replaces the initial disparity value at loca-

tion x. A reverse disparity value checks whether the round-

ing has caused an object boundary to be crossed and, if so,

rejects (in this case the selected disparity ds). The final

merged disparity map for a reference view of the rainbow

textured scene is shown in figure 7(c). Unfortunately, it still

contains some small patches with undefined disparity value.

For the further processing, it is necessary to have a dense

disparity map. Thus we apply a second-order total variation

as introduced by F. Lenzen et al. [14, 15] on the merged

disparity map. The proposed second order total variation

approach minimizes the functional

FTV2
(u) :=

1

2
‖u− f‖22 + αTV (u) + βTV 2(u) (27)

where α, β > 0 denote regularization parameters. The re-

sult after the applied second order total variation is shown

in figure 7(d). The final hyper-spectral image can now be

determined by addressing all color values along the orien-

tations whose direction is given by the achieved disparity

map.

PSNR [dB]

Buddha 24.94

ConeHead 31.39

LivingRoom 25.80

Ruin 33.31

Table 2. Shows the PSNR of the disparity estimation result with re-

spect to the ground truth for synthetically generated color-filtered

light fields.

4.2. sRGB reconstruction

For an RGB color reconstruction from the spectral im-

ages we need to find a method to determine the (R,G,B)
values from the pixel values Si of the captured spectral im-

ages i ∈ N . For this, we use the approach of Tominaga [22].

That proposes that the CIE color space (X,Y, Z) can be de-

termined by the pixel values Si multiplied by a weighting

function M .




X

Y

Z



 = M ·







S
′

1

...

S
′

N






(28)

The weighting function to approximate the CIE color

space can be determined by approximating the CIE color

matching functions. Thus the camera quantum efficiency

QEcam(λ) and the spectral sensitivity functions BPi(λ)
of the image i related band pass filter as well as the

spectral color distribution LS(λ) of the light source need

to be known. Then the CIE-color matching function

(x̄(λ), ȳ(λ), z̄(λ)) can be estimated by the formula





x̄(λ)
ȳ(λ)
z̄(λ)



 = M ·







QE
′

1(λ)
...

QE
′

N (λ)






+ e (29)

with

QE
′

i(λ) = BPi(λ) ·QEcam(λ) · LS(λ) (30)
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(a) (b) (c)

Figure 8. (a) shows a real captured metal test part with not satu-

rated specular highlights. (b) shows the estimated disparity map

using the traditional structure tensor as introduced in equation 4.

(c) shows the disparity estimation result after applying our pro-

posed structure tensor.

For the best possible approximation of the CIE color match-

ing function we introduce the functional FM which mini-

mizes the area difference between the color matching func-

tion and the obtained approximation of M for the entire fre-

quency domain Λ with λ ∈ Λ. The proposed functional

becomes

FM = min
~k

∫

Λ





x̄(λ)
ȳ(λ)
z̄(λ)



−M3xN ·QE
′

cam(λ) dλ (31)

After determining the weighting function M , we can trans-

fer the spectral information to the CIE color space using

equation 28. Next we convert the CIE color space as pro-

posed by Tominaga [22] to sRGB color space [21]





Rlinear

Glinear

Blinear



 = T





X

Y

Z



 (32)

with

T =





3.2406 −1.5372 −0.4986
−0.9689 1.8758 0.0415
0.0557 −0.2040 1.0570



 (33)

For the final visualization we also apply a gamma correction

of γ = 0.68 to the linear RGB-space which transforms the

linear values into sRGB.

5. Results

As result for homogeneous light fields, we show the

comparison of the new structure tensors J3 with respect to

the traditional structure tensor J1. The traditional structure

tensor leads to the result shown in figure 8(b), while our pro-

posed method shows a full coverage of the captured metal

test part as demonstrated in figure 8(c).

Next, we want to show the applicability of the proposed

structure tensor to color-filtered light fields and the RGB

reconstructions. To acquire heterogeneous light fields prop-

erly it is important to use linear-ordered color filters. They

provide a more stable estimation for intensity gradients, as

shown for linear luminance gradient light fields in contrast

to random distributed filters configurations. Due to that,

a constant quality in the orientation estimation of color-

filtered light fields is guaranteed as long as the gradient is

not reaching the critical maximum. Furthermore, consider-

ing a color distributions of objects placed in the scene, as

shown in figure 10 (c), it becomes important to select the

filter respectively, to ensure that color dependent orienta-

tions appear in the underlying EPI. To estimate orientation

for colors only seen by one camera is not possible. Thus we

can derive two constraints

• For broad color spectra of target object, the used band

pass filter can have a narrow bandwidth to obtain ana-

lyzable orientation.

• For narrow color spectra of target objects, the used

band pass filter needs to be chosen that a orientations

are visible in at least 5 neighboring images to guaran-

tee a valid estimation.

As shown in figure 5, the EPI contains local orientation in-

formation while black transitions illustrate vanishing color

content. Figure 9(a) shows the center view image of the

initial synthetic homogeneous light field. This light field

contains 31 images which get converted to a color-filtered

light field as shown in figure 5. Each image is filtered with

a band-pass filter having a full-width half-mean of 10 nm.

The filters are uniformly distributed in 10 nm steps between

400 nm and 700 nm. The resulting RGB images of the syn-

thetic light field is seen in figure 9(c).

The real color-filtered light fields are captured with a PCO-

edge 5.5 camera, mounted on a high-precise translation

stage. For the heterogeneous data we have a symmetric

light-field configuration starting from 400 nm to 700 nm

and back to 400 nm while each filter has a full-width half-

mean of 10 nm. The filters employed are 400 nm, 450 nm,

500 nm, 515 nm, 532 nm, 550 nm, 560 nm, 589 nm, 600 nm,

650 nm, 700 nm and back down to 400 nm. The processing

results of the acquired color-filtered light fields are shown in

figure 10(c). Input data and additional images are provided

in the additional material.

6. Conclusion

Since the traditional structure tensor suffered from the

restriction of a constant intensity along the orientation, the

new designed structure tensor overcomes this problem and

makes it suitable for an even larger field of applications.

The new structure tensor approach introduced in this paper

significantly reduces the error in the estimate of orientation

compared to the traditional structure tensor. We demon-

strate that the modified structure tensor has the advantage

of a high reliability in processing heterogeneous light fields.

This makes it possible to better analyze acquired light fields,
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