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Abstract

Motion blur can adversely affect a number of vision

tasks, hence it is generally considered a nuisance. We in-

stead treat motion blur as a useful signal that allows to com-

pute the motion of objects from a single image. Drawing

on the success of joint segmentation and parametric mo-

tion models in the context of optical flow estimation, we

propose a parametric object motion model combined with

a segmentation mask to exploit localized, non-uniform mo-

tion blur. Our parametric image formation model is dif-

ferentiable w.r.t. the motion parameters, which enables us

to generalize marginal-likelihood techniques from uniform

blind deblurring to localized, non-uniform blur. A two-stage

pipeline, first in derivative space and then in image space,

allows to estimate both parametric object motion as well

as a motion segmentation from a single image alone. Our

experiments demonstrate its ability to cope with very chal-

lenging cases of object motion blur.

1. Introduction

The analysis and removal of image blur has been an ac-

tive area of research over the last decade [e.g., 5, 11, 17, 34].

Starting with [8], camera shake has been in the focus of

this line of work. Conceptually, the blur is treated as a nui-

sance that should be removed from the image. While the

blur needs to be estimated in the form of a blur kernel, its

only purpose is to be used for deblurring. In contrast, it is

also possible to treat image blur as a signal that allows to

recover certain scene properties from the image. One such

example is blur from defocus, where the relationship be-

tween the local blur strength and depth can be exploited to

recover information on the scene depth at each pixel [19].

In this paper, we also treat blur as a useful signal and aim

to recover information on the motion in the scene from a

single still image. Unlike work dealing with camera shake,

which affects the image in a global manner, we consider lo-

calized motion blur arising from the independent motion of

objects in the scene (e.g., the “London eye” in Fig. 1(a)).

Previous work has approached the problem of estimat-

ing motion blur as identifying the object motion from a

(a) Input image with motion blur (b) Parametric motion with color-

coded motion segmentation

Figure 1. Our algorithm estimates motion parameters and motion

segmentation from a single input image.

fixed set of candidate motions [4, 13, 28], or by estimat-

ing a non-parametric blur kernel [25] along with the object

mask. The former has the problem that the discrete set of

candidate blurs restricts the possible motions that can be

handled. Estimating non-parametric blur kernels overcomes

this problem, but requires restricting the solution space, e.g.

by assuming spatially invariant motion. Moreover, existing

methods are challenged by fast motion, as these require a

large set of candidate motions or large kernels, and conse-

quently many parameters, to be estimated. We take a differ-

ent approach here and are inspired by recent work on optical

flow and scene flow, despite the fact that we work with a sin-

gle input image only. Motion estimation methods have in-

creasingly relied on approaches based on explicit segmenta-

tion and parametric motion models [e.g. 29, 36, 37] to cope

with large motion and insufficient image evidence.

Following that, we propose a parametrized motion blur

formulation with an analytical relation between the mo-

tion parameters of the object and spatially varying blur ker-

nels. Doing so allows us to exploit well-proven and ro-

bust marginal-likelihood approaches [17, 18] for inferring

the unknown motion. To address the fact that object mo-

tion is confined to a certain region, we rely on an explicit

segmentation, which is estimated as part of the variational

inference scheme, Fig. 1(b). Since blur is typically esti-

mated in derivative space [8], yet segmentation models are

best formulated in image space, we introduce a two-stage

pipeline, Fig. 2. First, we estimate the parametric motion

along with an initial segmentation in derivative space, and

then refine the segmentation in image space by exploiting
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Figure 2. Given a single, locally blurred image as input, our first stage uses variational inference on an image pyramid in derivative space

to estimate an initial segmentation and continuous motion parameters, here affine (Sec. 4). Thereby we rely on a parametric, differentiable

image formation model (Sec. 3). In a second stage, the segmentation is refined using variational inference on an image pyramid in image

space using a color model (Sec. 5). Our final output is the affine motion and a segmentation that indicates where this motion is present.

color models [e.g., 3]. We evaluate our approach on a num-

ber of challenging images with significant quantities of lo-

calized, non-uniform blur from object motion.

2. Related Work

For our task of estimating parametric motion from a sin-

gle input image, we leverage the technique of variational

inference [12]. Variational inference has been successfully

employed in the kernel estimation phase of blind deblur-

ring approaches [8, 21]. As there is an ambiguity be-

tween the underlying sharp image and blur kernel estima-

tion, blind deblurring algorithms benefit from a marginal-

ization over the sharp image [17, 18], which we adopt in

our motion estimation approach. While it is possible to con-

struct energy minimization algorithms for blind deblurring

that avoid these ambiguities [23], this is non-trivial. How-

ever, all aforementioned blind deblurring algorithms are re-

stricted to spatially invariant, non-parametric blur kernels.

Recent work lifts this restriction in two ways: First, the

space of admissible motions may be limited in some way.

To describe blur due to camera shake, Hirsch et al. [11]

approximate smoothly varying kernels with a basis in ker-

nel space. Whyte et al. [31] approximate blur kernels by

discretization in the space of 3D camera rotations, while

Gupta et al. [10] perform a discretization in the space of

image plane translations and rotations. Similarly, Zheng et

al. [38] consider only discretized 3D translations. Using an

affine motion model in a variational formulation, our ap-

proach does not require discretization of the motion space.

Second, a more realistic description of local object mo-

tion may be achieved by segmenting the image into regions

of constant motion [4, 16, 25]. To keep the number of

parameters manageable, previous approaches either choose

the motion of a region from a very restricted set of spatially

invariant box filters [4, 16], assume it to have a spatially in-

variant, non-parametric kernel of limited size [25], or to be

discretized in kernel space [13].

Approaches that rely on learning spatially variant blur

are similarly limited to a discretized set of detectable mo-

tions [6, 28]. Local Fourier or gradient-domain features

have been learned to segment motion-blurred or defocused

image regions [20, 26]. However, these approaches are de-

signed to be indifferent to the motion causing the blur. Our

affine motion model allows for estimating a large variety

of practical motions and a corresponding segmentation. In

contrast, Kim et al. [14] consider continuously varying box

filters using TV regularization, but employ no segmenta-

tion. However, the problem is highly under-constrained,

making it susceptible to noise and model errors.

When given multiple sharp images, the aggregation of

smooth motion per pixel into affine motions per layer has a

long history in optical flow [e.g. 22, 27, 30, 36, 37]. Lever-

aging motion blur cues for optical flow estimation in se-

quences affected by blur, Wulff and Black [33] as well as

Cho et al. [5] use a layered affine model. In an extension of

[14], Kim and Lee [15] use several images to estimate mo-

tion and sharp frames of a video. In our case of single image

motion estimation, Dai and Wu [7] use transparency to esti-

mate affine motion and region segmentation. However, this

requires computing local α-mattes, a problem that is actu-

ally more difficult (as it is more general) than computing

parametric object motion. In practice, errors in the α-matte

and violations of the sharp edge assumption in natural tex-

tures lead to inaccurate results. Here we take a more di-

rect approach and consider a generative model of a motion-

blurred image, yielding significantly better estimates.

3. Parametrized Motion Blur Formation

We begin by considering the image formation in the

blurry part of the image, and defer the localization of the
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blur. Let y = (yi)i be the observed, partially blurred input

image, where i denotes the pixel location. Let x denote the

latent sharp image that corresponds to a (hypothetical) in-

finitesimally short exposure. Since each pixel measures the

intensity accumulated over the exposure time tf , we can ex-

press the observed intensity at pixel i as the integral

yi =

∫ tf

0

x
(

pi(t)
)

dt+ ǫ, (1)

where pi(t) describes which location in the sharp image x

is visible at yi at a certain time t; ǫ summarizes various noise

sources. Note that Eq. (1) assumes that no (dis)occlusion is

taking place; violations of this assumption are subsumed in

the noise. For short exposures and smooth motion, pixel yi
has only a limited support window Ωi in x. Equation (1)

can thus be expressed as a spatially variant convolution

yi = ki ⊗ xΩi
+ ǫ, (2)

where the non-uniform blur kernels ki hold all contributions

from pi(t) received during the exposure time. To explicitly

construct the blur kernels, we utilize that the motion blur

in the blurred part of the image is parametrized by the un-

derlying motion in the scene. Motivated by the fact that

rigid motion of planar surfaces can be reasonably approxi-

mated by an affine model [1], we choose the parametriza-

tion to be a single affine model ua
i with parameters a ∈ R

6.

Note that other, more expressive parametric models (e.g.

perspective) are possible. Concretely, we restrict the paths

to pi(t) =
(

t
tf

− 1
2

)

ua
i , i.e. the integration path depends di-

rectly on the pixel location i and affine parameters a, and is

constant in time. We now explicitly build continuously val-

ued blur kernels ka
i that allow us to plug the affine motion

analytically into Eq. (2).

Analytical blur kernels. Given the parametric model we

perform discretization in space and time to obtain the kernel

ka
i (ξ) =

1

Za
i

T
∑

t=0

psf
(

ξ |
(

t
T
− 1

2

)

ua
i

)

, (3)

where ξ corresponds to the local coordinates in Ωi and Za
i

is a normalization constant that makes the kernel energy-

preserving. T is the number of discretization steps of the

exposure interval, and psf(ξ |µ) is a smooth, differentiable

point-spread function centered at µ that interpolates the

spatial discretization in x. The particular choice of a point-

spread function is not crucial, as long as it is differentiable.

However, for computational reasons we want the resulting

kernels to be sparse. Therefore we choose the point-spread

function to be the weight function of Tukey’s biweight [9]

psf(ξ |µ) =







(

1− ‖ξ−µ‖2

c2

)2

if ‖ξ − µ‖ ≤ c

0 else,
(4)

(a) ua

i
(b) ka

i

(c) ∂

∂a2
ka

i
(d) ∂

∂a5
ka

i

Figure 3. Non-uniform blur kernels at select image locations, and

their corresponding derivative filters (positive values – red, nega-

tive values – blue) for an example rotational motion. We visualize

the derivative filters w.r.t. the rotational parameters a2, a5. Note

how derivative filters change along the y-axis for the horizontal

component, a2, and the vertical component, a5, respectively.

where c ∈ [1, 2] controls the width of the constructed blur

kernels. For notational convenience, we write the entire im-

age formation process with vectorized images as y = Kax,

where Ka denotes a blur matrix holding contributions from

all spatially varying kernels ka
i in its rows.

Note that Eq. (3) yields symmetric blur kernels, hence

the latent sharp image is assumed to have been taken in the

middle of the exposure interval. This is crucial when esti-

mating motion parameters, as it overcomes the directional

ambiguity of motion blur. The advantage of an analytical

model for the blur kernels is two-fold: First, it allows us to

directly map parametrized motion to non-uniform blur ker-

nels, and second, differentiable point-spread functions al-

low us to compute derivatives w.r.t. the parametrization, i.e.
∂
∂a

ka
i (ξ). More precisely, we compute partial derivatives in

the form of non-uniform derivative filters acting on the im-

age, i.e. ∂
∂a

(ka
i ⊗ xΩi

) =
(

∂
∂a

ka
i

)

⊗ xΩi
. Figure 3 shows

the direct mapping from a motion field to non-uniform blur

kernels for various locations inside the image, as well as a

selection of the corresponding derivative filters.

Localized non-uniform motion blur. Since we are in-

terested in recovering localized object motion rather than

global scene motion, the image formation model in Eq. (2)

is not sufficient. Here we assume that the image consists

of two regions: a static region (we do not deal with cam-

era shake/motion), termed background, and a region that

is affected by motion blur, termed foreground. These re-

gions are represented by discrete indicator variables h =
(hi)i, hi ∈ {0, 1}, which indicate whether a pixel yi be-

longs to the blurry foreground. Given the segmentation h,
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we assume a blurry pixel to be formed as

yi = hi(k
a
i ⊗ xΩi

) + (1− hi)xi + ǫ. (5)

Although this formulation disregards boundary effects at

occlusion boundaries, it has shown good results in the case

of constant motion [25]. Note that our generalization to

non-uniform parametric blur significantly expands the ap-

plicability, but also complicates the optimization w.r.t. the

kernel parameters. Despite no closed-form solution, our

differentiable kernel parametrization enables efficient infer-

ence as we show in the following.

4. Marginal-Likelihood Motion Estimation

Estimating any form of motion from a single image is

a severely ill-posed problem. Therefore, we rely on a ro-

bust probabilistic model and inference scheme. In the re-

lated, but simpler problem of uniform blur kernel estima-

tion, marginal-likelihood estimation has proven to be very

reliable [18]. We show how more general non-uniform mo-

tion models can be incorporated into marginal-likelihood

estimation using variational inference. Specifically, we

solve for the unknown parametric motion a while marginal-

izing over both latent image x and segmentation h:

â = argmax
a

p(y |a) (6)

= argmax
a

∫

p(x,h,y |a) dx dh . (7)

We thus look for the point estimate of a that maximizes

the marginal likelihood of the motion parameters. This is

enabled by our differentiable blur model from Sec. 3. We

model the likelihood of the motion as

p(x,h,y |a) = p(y |x,h,a) p(h) p(x), (8)

where we assume the prior over the image, p(x), and the

prior over the segmentation, p(h), to factor.

Likelihood of locally blurred images. The image forma-

tion model (Eq. 5) and the assumption of i.i.d. Gaussian

noise ǫ with variance σ2
n gives rise to the image likelihood

p(y |x,h,a) =
∏

i

[

N
(

yi |k
a
i ⊗ xΩi

, σ2
n

)hi
·

N
(

yi |xi, σ
2
n

)1−hi

]

.

(9)

Segmentation prior. We assume the object to be spatially

coherent and model the segmentation prior with a pairwise

Potts model that favors pixels in an 8-neighborhood N to

belong to the same segment. Additionally, we favor pixels

to be segmented as background if there is insufficient evi-

dence from the image likelihood. We thus obtain

p(h) ∝
∏

i

exp(−λ0hi) ·
∏

(i,j)∈N

exp
(

− λ [hi 6= hj ]
)

,

where [·] is the Iverson bracket and λ, λ0 > 0 are constants.

Sharp image prior. In a marginal-likelihood framework

with constant motion, Gaussian scale mixture (GSM) mod-

els with J components have been employed successfully

[8, 18, 25]. We adopt them here in our framework as

p(x) =
∏

i,γ

∑

j

πj N
(

fi,γ(x) | 0, σ
2
j

)

, (10)

where fi,γ(x) is the ith response of the γth filter from a set of

(derivative) filters γ ∈ {1, . . . ,Γ} and (πj , σ
2
j ) correspond

to GSM parameters learned from natural image statistics. In

log space Eq. (10) is a sum of logarithms, which is difficult

to work with. As shown by [18] this issue can be overcome

by augmenting the image prior with latent variables, where

each variable indicates the scale a particular filter response

arises from. Denoting latent indicators for each filter re-

sponse with li,γ = (li,γ,j)j ∈ {0, 1}J ,
∑

j li,γ,j = 1, we

can write the joint distribution as

p(x, l) =
∏

i,γ

∏

j

π
li,γ,j

j N
(

fi,γ(x) | 0, σ
2
j

)li,γ,j
, (11)

where l is the concatenation of all latent indicator vectors.

4.1. Variational inference

Having defined suitable priors and likelihood, we aim to

solve Eq. (7) for the unknown motion parameters. Since this

problem is intractable, we need to resort to an approximate

solution scheme. We use variational approximate inference

[18] and define a tractable parametric distribution

q(x,h, l) = q(x)q(h)
∏

i,γ

q(li,γ), (12)

where we assume the approximating image distri-

bution to be Gaussian with diagonal covariance

q(x) = N
(

x |µx, diag(σx)
)

[18]. The approximate

segmentation distribution is assumed to be pixel-wise

independent Bernoulli q(h) =
∏

i r
hi

i (1− ri)
1−hi and

the approximate indicator distribution to be multinomial

q(li,γ) =
∏

j v
li,γ,j

i,γ,j , s.t.
∑

j vi,γ,j = 1.

Variational free energy. In the marginal-likelihood frame-

work we directly minimize the KL-divergence between the

approximate distribution and the augmented motion likeli-

hood KL(q(x,h, l) ‖ p(x,h, l,y |a)) w.r.t. the parameters

of q(x,h, l) and the unknown affine motion a. Doing so

maximizes a lower bound for the term p(y |a) in Eq. (6)

[18]. The resulting free energy decomposes into the ex-

pected augmented motion likelihood and an entropy term

F (q,a) =−

∫

q(x,h, l) log p(x,h, l,y |a) dx dh dl

+

∫

q(x,h, l) log q(x,h, l) dx dh dl, (13)
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which we want to minimize. Relegating a more detailed

derivation to the supplemental material, the free energy

works out as

F (q,a) =

∫

q(x)q(h)‖h◦(K
ax)+(1−h)◦x−y‖2

2σ2
n

dx dh

+

∫

q(x)
(
∑

i,γ,j vi,γ,j
‖fi,γ(x)‖

2

2σ2

j

)

dx

+
∑

i,γ,j vi,γ,j(log σj − log πj + log vi,γ,j)

+λ0

∑

i ri + λ
∑

(i,j)∈N ri + rj − 2rirj

+
∑

i ri log ri + (1− ri) log(1− ri)

− 1
2

∑

i log(σx)i + const. (14)

Minimizing this energy w.r.t. q and a is not trivial, as

various variables occur in highly non-linear ways. Note that

the non-linearities involving the blur matrix Ka do not oc-

cur in previous variational frameworks, where blur kernels

are directly considered as unknowns themselves [8, 18, 21]

or are part of a discretized representation linear in the un-

knowns [31], essentially rendering the kernel update into a

quadratic programming problem. Despite these issues, we

show that one can still minimize the free energy efficiently.

More precisely, we employ a standard coordinate descent;

i.e. at each update step one set of parameters is optimized,

while the others are held fixed. In each update step we make

use of a different optimization approach to accommodate

the dependencies on this particular parameter best.

Image and segmentation update. Since we employ the

same image prior as previous work [8, 17, 25], the alternat-

ing minimization of F (q,a) w.r.t. q(x) and q(l) is similar

and can be done in closed form (see supplemental). For up-

dating the segmentation, we have to use a different scheme.

Isolating the terms for r we obtain

F (q,a) = g(q(x),a,y)T r+ λ
∑

(i,j)∈N

ri + rj − 2rirj

+
∑

i

ri log ri + (1− ri) log(1− ri) + const,

where g(q(x),a,y)T models the unary contributions from

the expected likelihood and the segmentation prior in

Eq. (14). The energy is non-linear due to the entropy terms

as well as the quadratic terms in the Potts model. However,

the segmentation update does not need to be optimal and it

is sufficient to reduce the free energy iteratively. We thus

use variational message passing [32], interchanging mes-

sages whenever we update the segmentation according to

rnew = σ
(

− g(q(x),a,y)− λLN1+ 2λLNrold

)

, (15)

where σ is the sigmoid function, and LN an adjacency ma-

trix for the 8-neighborhood.

(a) Blurry input image y (b) Estimated motion model a

(c) q(h) after stage 1 (d) q(h) after stage 2

Figure 4. Improved segmentation after inference in image space.

Motion estimation. The unknown motion occurs as a pa-

rameter in the expected likelihood. We could deploy a

black-box optimizer, however this is very slow. A far more

efficient approach is to leverage the derivatives of the ana-

lytic blur model and linearize the blur matrix Ka for small

deviations from the current motion estimate a0 as

Ka ≈ K0 +
6

∑

p=1

∂K0

∂ap
dp =: Kd, (16)

where d = a− a0 is an unknown increment vector.

We locally approximate Ka by Kd in Eq. (14) and mini-

mize Eq. (14) w.r.t. subsequent increments d. This is essen-

tially a non-linear least squares problem with an additional

term. In the supplemental material we show how the ad-

ditional term can be linearized and our approach can thus

profit from non-linear least-squares algorithms that are con-

siderably faster than black box optimizers.

5. Two-Stage Inference and Implementation

To speed up the variational inference scheme and in-

crease its robustness, we employ several well-known de-

tails. First, we perform coarse-to-fine estimation on an im-

age pyramid (scale factor 0.5), which speeds up computa-

tion and avoids those local minima that present themselves

only at finer resolutions [8]. Second, we work in the image

gradient domain [18]. Theoretically speaking, the forma-

tion model is only valid in the gradient domain for spatially

invariant motion, but practically, the step sizes used in our

optimization are sufficiently small. The key benefit of the

gradient domain is that the variational approximation with

independent Gaussians is more appropriate [18].

While motion parameters can be estimated well in this

way (c.f . Figs. 4(b) and 5), segmentations for regions with-

out significant structure are quite noisy and may contain
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holes (Fig. 4(c)). This is due to the inherent ambiguity be-

tween texture and blur. Smooth regions belong either to a

textured, fast-moving object, or an untextured static object.

While we cannot always resolve this ambiguity in texture-

less areas, it thus also does not mislead motion estimation.

To refine the segmentation, we propose a two-stage ap-

proach; see Fig. 2 for an overview. In the first stage, we

work in the gradient domain and obtain an estimate for the

affine motion parameters and an initial, noisy segmentation.

In a second stage, we work directly in the image domain.

We keep the estimated motion parameters fixed and initial-

ize the inference with the segmentations from the first stage.

Moreover, we augment the segmentation prior from Sec. 4

with a color model [3] based on Gaussian mixtures for both

foreground and background:

p̃(h | θf , θb) ∝ p(h)

·
[

∏

i

GMM(yi | θf )
hi GMM(yi | θb)

1−hi

]λc

. (17)

Here, θf , θb are the color distributions and λc is a weight

controlling the influence of the color statistics. We alternate

between updating the segmentation and the color statistics

of the foreground/background. Empirically, we find that ex-

ploiting color statistics in the image space, which is not pos-

sible in the gradient domain, significantly improves the ac-

curacy of the motion segmentation (see Fig. 4(d)).

Initialization. Since our objective is non-convex, results

depend on the initialization on the coarsest level of the im-

age pyramid. We initialize the segmentation with q(hi) =
0.5, i.e. foreground and background are equally likely ini-

tially. Interestingly, we cannot initialize the motion with

a = 0, as the system matrix in the motion update then be-

comes singular. This is due to the impossibility of deter-

mining the “arrow of time” [24], as Eq. (5) is symmetric

w.r.t. the sign of a. Since the sign is thus arbitrary, we ini-

tialize a with a small, positive translatory motion. We an-

alyze the sensitivity of our approach to initialization in the

supplemental material, revealing that our algorithm yields

consistent results across a wide range of starting values.

6. Experiments

Quantitative evaluation. We synthetically generated 32
test images that contain uniform linear object motion or

non-uniform affine motion. For these images we evaluate

the segmentation accuracy with the intersection-over-union

(IoU) error and motion estimation with the average end-

point error (AEP). While we address the more general non-

uniform case, we compare to state-of-the-art object motion

estimation approaches that in their public implementations

consider only linear motion [4, 7]. Table 1 shows the quan-

titative results; visual examples can be found in the supple-

mental material. Our approach performs similar to [4] in

Table 1. Quantitative evaluation.

segmentation score (IoU) motion error (AEP)

Method uniform non-uniform uniform non-uniform

[4] 0.53 0.33 3.84 13.37

[7] – – 17.21 15.06

Ours 0.50 0.43 4.81 7.43

the more restricted uniform motion case, but shows a con-

siderably better performance than [4] for the more general

non-uniform motion. We can thus address a more general

setting without a large penalty for simpler uniform object

motion. The method of [7] turns out not to be competitive

even in the uniform motion case.

Qualitative evaluation. We conduct qualitative experi-

ments on motion-blurred images that contain a single blurry

object under non-uniform motion blur. Such images fre-

quently appear in internet photo collections as well as in the

image set provided by [26].

Figs. 1 and 5 show results of our algorithm. In addition

to the single input image, the figures show an overlay of

a grayscale version of the image with the color-coded [2],

non-constant motion field within the segmented region. The

global affine motion is additionally visualized with an arrow

plot, where green arrows show the motion within the mov-

ing object and red arrows continue the global motion field

outside the object. All our visual results indicate the motion

with unidirectional arrows to allow grasping the relative ori-

entation, but we emphasize that the sign of the motion vec-

tor is arbitrary.

Fig. 1(a) shows a particularly challenging example of

motion estimation, as the ferris wheel covers a very small

number of pixels. Still, the rotational motion is detected

well. Fig. 1(b) shows the results after the first stage of the

algorithm. Pixels that are not occluded by the tree branches

are segmented successfully already using the Potts prior

without the additional color information of the second stage.

The scenes in Fig. 5 show that our motion estimation algo-

rithm can clearly deal with large motions that lead to signif-

icant blur in the image. Note that large motions can actu-

ally help our algorithm, at least in the presence of sufficient

texture in the underlying sharp scene, as the unidirectional

change of image statistics induced by the motion allows to

identify its direction [4]. With small motion, this becomes

more difficult and the motion may be estimated less accu-

rately by our approach. Moreover, we note that the continu-

ation of the flow field outside the object fits well with what

humans understand to be the 3D motion of the considered

object. The last image in Fig. 5 shows that foreground and

moving object do not necessarily have to coincide for our

approach. While motion estimation is successful even in

challenging images, the segmentation results are not always
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Figure 5. The blurry images (top row) show regions with significant motion blur, as well as static parts. Our algorithm estimates non-

uniform motion for all blurry regions and segments out regions dominated by this blur (bottom row, color coding see text).

(a) Blurry input (b) Whyte et al. [31] (c) Xu et al. [35] (d) Ours

Figure 6. Comparison of blind deblurring results. Note the sharpness of the headlights in (d), as well as the over-sharpened road in (b),(c).

perfectly aligned with the motion-blurred objects. More-

over, holes may appear. There are two reasons for this:

First, our image formation model from Eq. (5) is a sim-

ple approximation and does not capture transparency effects

at boundaries. Second, even the color statistics of the sec-

ond stage do not always provide sufficient information to

correctly segment the motion-blurred objects. For instance,

for the yellow car in the 3rd column, the color statistics of

the transparent and textureless windows closely match the

statistics of the street and thus give rise to false evidence

toward the background. Thus our framework identifies the

window as background rather than blurry foreground. Com-

paring our results to those of the recent learning approach

of Sun et al. [28] in Fig. 8, we observe that the affine mo-

tion is estimated correctly also at the lower right corner,

where their discretized motion estimate becomes inaccu-

rate. While our segmentation correctly asserts the shirt of

the biker as moving in parallel to the car, the color-based

segmentation fails to assign the same motion to the black

remainder of the cyclist and the transparent car window.

These holes indicate that our algorithm cannot resolve the

ambiguity between uniform texture and motion blur in all

cases.

We also compare our segmentation results to other blur

segmentation and detection algorithms, see Fig. 7. To this

end, we have applied the methods of Chakrabarti et al. [4]

and Shi et al. [26]. The results indicate that, despite the dis-

criminative nature of [26], blurry regions and sharp regions

are not consistently classified. Fig. 7(c) shows the effect

of [4] assuming constant horizontal or vertical motion, thus

only succeeds in regions where this assumption is approxi-

mately satisfied. Our parametric motion estimation is more

flexible and thus identifies blurry objects more reliably.

Although our method is not primarily aimed at deblur-

ring, a latent sharp image is estimated in the course of

stage 2. In Fig. 6 we compare this latent sharp image to the

reconstructions of [31] and [35]. Using the publicly avail-

able implementations, we have chosen the largest possible

kernel sizes to accommodate the large blur sizes in our least

blurry test image. We observe that our method recovers,

e.g., the truck’s headlights better than the other methods.
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