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Abstract

This paper addresses the problem of mirror surface re-

construction, and a solution based on observing the reflec-

tions of a moving reference plane on the mirror surface is

proposed. Unlike previous approaches which require te-

dious work to calibrate the camera, our method can recover

both the camera intrinsics and extrinsics together with the

mirror surface from reflections of the reference plane under

at least three unknown distinct poses. Our previous work

has demonstrated that 3D poses of the reference plane can

be registered in a common coordinate system using reflec-

tion correspondences established across images. This leads

to a bunch of registered 3D lines formed from the reflec-

tion correspondences. Given these lines, we first derive an

analytical solution to recover the camera projection matrix

through estimating the line projection matrix. We then opti-

mize the camera projection matrix by minimizing reprojec-

tion errors computed based on a cross-ratio formulation.

The mirror surface is finally reconstructed based on the op-

timized cross-ratio constraint. Experimental results on both

synthetic and real data are presented, which demonstrate

the feasibility and accuracy of our method.

1. Introduction

3D reconstruction of diffuse surfaces has enjoyed

tremendous success. Diffuse surfaces reflect light from a

single incident ray to many rays in all directions, resulting

in a constant appearance regardless of the observer’s view-

point. Methods for diffuse surface reconstruction can there-

fore rely on the appearance of the object.

This paper considers mirror surfaces, which exhibit spec-

ular reflections and whose appearances are a reflection of

the surrounding environment. Under specular reflection, an
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Figure 1: (a) A stationary uncalibrated camera observing

the reflections of a reference plane undergoing an unknown

motion. (b) Surface points can be recovered using the cross-

ratio between a surface point M and its reflection corre-

spondences {X0,X1,X2}.

incoming ray is reflected to a single outgoing ray. This spe-

cial characteristic leads to different appearances of the mir-

ror surface under different viewpoints, and renders diffuse

surface reconstruction methods useless. Meanwhile, there

exist many objects with a mirror surface in the man-made

environment. The study of mirror surface reconstruction is

therefore an important problem in computer vision.

In this paper, we assume the mirror surface reflect a light

ray only once, and tackle the mirror surface reconstruction

problem by adopting a common approach of introducing

motion to the environment. Unlike previous methods which

require a fully calibrated camera and known motion, we

propose a novel solution based on observing the reflections

of a reference plane undergoing an unknown motion with a

stationary uncalibrated camera (see Fig. 1(a)).

2D correspondences between the image and the refer-

ence plane are established by displaying a sweeping line

on the plane (we use a computer screen as the reference

plane in practice). The relative poses of the reference plane

are then estimated [16], and rays piercing the plane under

different poses are determined for each image point on the

mirror surface.

Given the rays and their corresponding image points, we
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first derive an analytical solution to estimate the camera pro-

jection matrix through estimating the line projection matrix.

Such a line projection matrix can then be transformed to

a corresponding camera (point) projection matrix [11]. To

make our solution more robust to noise, we use this closed-

form solution as an initialization and optimize the camera

projection matrix by minimizing reprojection errors com-

puted based on a cross-ratio formulation for the mirror sur-

face (see Fig. 1(b)). The mirror surface is finally recon-

structed based on the optimized cross-ratio constraint.

The key contributions of this work are

• To the best of our knowledge, the first mirror surface

reconstruction solution under an unknown motion and

an uncalibrated camera.

• A closed-form (linear) solution for estimating the cam-

era projection matrix from reflection correspondences.

• A cross-ratio based nonlinear formulation that allows

a robust estimation of the camera projection matrix to-

gether with the mirror surface.

2. Related work

Great efforts have been devoted to the problem of mirror

surface recovery [4, 12, 22]. Based on the assumed prior

knowledge, shape recovery methods for mirror surfaces can

be classified into those assuming an unknown distant envi-

ronment and those assuming a known nearby environment.

Under an unknown distant environment, a set of methods

referred to as shape from specular flow (SFSF) have been

proposed. In [18], Oren and Nayar successfully recovered a

3D curve on the object surface by tracking the trajectory of

the reflection of a light source on the mirror surface. How-

ever, it is difficult to track a complete trajectory since the

reflected feature will be greatly distorted near the occluding

boundary of an object. Roth and Black [23] introduced the

concept of specular flow and derived its relation with the 3D

shape of a mirror surface. Although they only recovered a

surface with a parametric representation (e.g., sphere), their

work provides a theoretical basis for the later methods. In

[1, 2], Adato et al. showed that under far-field illumina-

tion and large object-environment distance, the observed

specular flow can be related to surface shape through a pair

of coupled nonlinear partial differential equations (PDEs).

Vasilyev et al. [29] further suggested that it is possible to

reconstruct a smooth surface from one specular flow by in-

ducing integrability constraints on the surface normal field.

In [9], Canas et al. reparameterized the nonlinear PDEs as

linear equations that lead to a more manageable solution.

Although SFSF achieves a theoretical breakthrough in

shape recovery of mirror surfaces, the essential issues in

tracking dense specular flow and in solving PDEs still hin-

der their practical use. In [25], Sankaranarayanan et al.

developed an approach that uses sparse specular reflection

correspondences instead of specular flow to recover a mir-

ror surface linearly. Their proposed method is more practi-

cal than the traditional SFSF methods. Nevertheless, their

method requires quite a number of specular reflection cor-

respondences across different views, which are difficult to

obtain due to the distorted reflections on the mirror surface.

Under a known nearby environment, a different set of

methods for shape recovery of mirror surfaces can be de-

rived. The majority of these methods are based on the

smoothness assumption on the mirror surface. Under this

assumption, one popular way is to formulate the surfaces

into the problem of solving PDEs. In [26, 27], Savarese and

Perona demonstrated that local surface geometry of a mirror

surface can be determined by analyzing the local differential

properties of the reflections of two calibrated lines. Follow-

ing the same fashion, Rozenfeld et al. [24] explored the 1D

homography relationship between the calibrated lines and

the reflections using sparse correspondences. Depth and

first order local shape are estimated by minimizing a sta-

tistically correct measure, and a dense 3D surface is then

constructed by performing a constrained interpolation. In

[15], Liu et al. proved that a smooth mirror surface can be

determined up to a two-fold ambiguity from just one reflec-

tion view of a calibrated reference plane.

Another way to formulate the mirror surfaces is by em-

ploying normal consistency property to refine visual hull

and/or integrate normal field. In [6], Bonfort and Sturm

introduced a voxel carving method to reconstruct a mirror

surface using a normal consistency criterion derived from

the reflections of some calibrated reference planes. In or-

der to get a better view for shape recovery, they further

proposed that the camera may not need to face the refer-

ence plane, and the shape can be well recovered by us-

ing a mirror to calibrate the poses of the reference plane

[7, 28]. In [17], Nehab et al. formulated the shape recovery

as an image matching problem by minimizing a cost func-

tion based on normal consistency. In [30], Weinmann et at.

employed a turntable setup with multiple cameras and dis-

plays, which enables the calculation of the normal field for

each reflection view. The 3D surface is then estimated by a

robust multi-view normal field integration technique. In [3],

Balzer et al. deployed a room-sized cube consisting of six

walls that encode/decode specular correspondences based

on a phase shift method. The surface is then recovered by

integration of normal fields.

Besides, instead of directly formulating the surfaces, an-

other direction is to reconstruct the individual light paths

based on the law of reflection. Kutulakos and Steger [14]

showed that a point on a mirror surface can be recovered

if the positions of two reference points are known in space

and reflected to the same image point in a single view, or

the positions of two reference points are known and are re-
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flected by the same surface point to two different views. In

[16], Liu et al. established reflection correspondences on

the reference plane under three distinct poses, and derived a

method for recovering the relative poses of the plane. Given

the camera intrinsics, the camera pose can also be solved

and the surface can be recovered by ray triangulation.

Note that calibration plays an important role in all the

above methods that assume a known nearby environment.

In this paper, we neither make assumption on the smooth-

ness of the mirror surface, nor require the calibration of the

camera. Our proposed approach can automatically calibrate

the setup as well as reconstruct the mirror surface using the

observed reflections of the reference plane.

Cross-ratio constraint has been used to estimate mirror

position and camera pose for axial non-central catadioptric

systems [19], and produce more point correspondences in

the context of 3D reconstruction [20]. Our method also re-

lies on a cross-ratio constraint to optimize the camera pro-

jection matrix as well as recovering the mirror surface. Un-

like existing methods handling the case when both the mir-

ror and the reference plane are simultaneously visible to the

camera (e.g., [21]), we tackle a more challenging scenario

where only the mirror surface is visible.

3. Acquisition Setup

M

X0

X1

X2

m

C

P2
P1

P0
S

I[R|T]

Figure 2: Setup used for mirror surface reconstruction. Re-

fer to Section 3 for notations and definitions.

Fig. 2 shows the setup used for mirror surface recon-

struction. Consider a pinhole camera centered at C observ-

ing the reflections of a moving reference plane on a mirror

surface S. Let X0 be a point on the plane at its initial pose,

denoted by P0, which is reflected by a point M on S to a

point m on the image plane I . Suppose the reference plane

undergoes an unknown rigid body motion, and let P1 and

P2 denote the plane at its two new poses. Let X1 and X2 be

points on P1 and P2, respectively, which are both reflected

by M on S to the same image point m on I . X0, X1 and

X2 are referred to as reflection correspondences of the im-

age point m.

4. A Closed-form Solution

In this section, we first briefly review Plücker coordi-

nates and the line projection matrix. We then derive a linear

method for obtaining a closed-form solution to the line pro-

jection matrix of a camera from reflection correspondences

of the image points.

4.1. Plücker Coordinates

A 3D line can be described by a skew-symmetric Plücker

matrix L = QPT −PQT =








0 q1p2 − q2p1 q1p3 − q3p1 q1p4 − q4p1
q2p1 − q1p2 0 q2p3 − q3p2 q2p4 − q4p2
q3p1 − q1p3 q3p2 − q2p3 0 q3p4 − q4p3
q4p1 − q1p4 q4p2 − q2p4 q4p3 − q3p4 0









,

where P = [p1 p2 p3 p4]
T and Q = [q1 q2 q3 q4]

T are

the homogeneous representations of two distinct 3D points.

Since L is skew-symmetric, it can be represented simply

by a Plücker vector L consisting of its 6 distinct non-zero

elements

L =

















l1
l2
l3
l4
l5
l6

















=

















q1p2 − q2p1
q1p3 − q3p1
q1p4 − q4p1
q2p3 − q3p2
q3p4 − q4p3
q4p2 − q2p4

















. (1)

Dually, a matrix L̄ can be constructed from two dis-

tinct planes with homogeneous representations P̂ and Q̂ as

L̄ = Q̂P̂T − P̂Q̂T. The dual Plücker vector can be con-

structed directly from L̄ or by rearranging the elements of

L as

L̄ = [l5 l6 l4 l3 l1 l2]
T. (2)

Let A = [a1 a2 a3]
T and B = [b1 b2 b3]

T be two distinct

3D points in Cartesian coordinates. Geometrically, the line

defined by these points can be represented by a direction

vector ω = (A−B) = [l3,−l6, l5]
T and a moment vector

ν = (A×B) = [l4,−l2, l1]
T, which define the line up to

a scalar factor.

Two 3D lines L and L′ can either be skew or coplanar.

The geometric requirement for the latter case is that the dot

product between the first direction vector and the second

moment vector should equal the negative of the dot product

between the second direction vector and the first moment

vector. Let the two lines have direction vectors ω, ω′ and

moment vectors ν, ν ′, respectively. They are coplanar (i.e.,

either coincident or intersect) if and only if

ω · ν ′ + ν · ω′ = 0 ⇔ L · L̄′ = 0. (3)

Note that a Plücker vector is not any arbitrary 6-vector.

A valid Plücker vector must always intersect itself, i.e.,

L · L̄ = 0 ⇔ det(L) = 0. (4)
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4.2. Line Projection Matrix

Using homogeneous coordinates, a linear mapping can

be defined for mapping a point X in 3D space to a point x

in a 2D image, i.e.,

x = PX, (5)

where P is a 3 × 4 matrix known as the camera (point)

projection matrix. Similarly, using Plücker coordinates, a

linear mapping can be defined for mapping a line L in 3D

space to a line l (in homogeneous coordinates) in a 2D im-

age, i.e.,

l = PL̄, (6)

where P is a 3× 6 matrix known as the line projection ma-

trix. Note that each row PT
i (i ∈ {1, 2, 3}) of P represents

a plane (in homogeneous coordinates) that intersects at the

optical center. Dually, each row PT
i (i ∈ {1, 2, 3}) of P rep-

resents a line that intersects at the optical center (see Fig. 3).

It follows that a valid line projection matrix must satisfy

Pi · P̄j = 0 ∀ i, j ∈ {1, 2, 3} ⇔ PP̄T = 03,3, (7)

where P̄ = [P̄1 P̄2 P̄3]
T.
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(a) (b)

Figure 3: (a) Rows of a point projection matrix represent

planes that intersect at the optical center C of the camera.

(b) Dually, rows of a line projection matrix represent lines

that intersect at the optical center.

4.3. Estimating the Line Projection Matrix

To estimate the line projection matrix of the camera, we

first employ the method described in [16] to recover the rel-

ative poses of the reference plane under three distinct poses

using reflection correspondences established across the im-

ages. We can then form a 3D Plücker line L from the reflec-

tion correspondences of each observed point x in the image.

Note that, by construction, x must lie on the projection of

L, i.e.,

xTPL̄ = 0. (8)

Given a set of 3D space lines {L1, ...,Ln} constructed for

a set of image points {x1, ...,xn}, the constraint derived in

(8) can be arranged into

A~P = 0, (9)

where ~P = [PT
1 PT

2 PT
3 ]

T and

A =







xT
1 ⊗ L̄T

1
...

xT
n ⊗ L̄T

n






.1 (10)

The line projection matrix of the camera can then be esti-

mated by solving

argmin
~P

‖A~P‖2 (11)

subject to ‖~P‖ = 1. The line projection matrix obtained

thus can be transformed into a point projection matrix and

vice versa. Note that, however, (11) minimizes only alge-

braic errors and does not enforce (7). The solution to (11) is

therefore subject to numerical instability and not robust in

the presence of noise.

Instead of solving (11), we can minimize the geomet-

ric distance from each image point to the projection of the

corresponding 3D line. Let l = [a, b, c]T = PL̄ be the pro-

jection of the 3D line L corresponding to an image point

x = [x1, x2, x3]
T. P can be estimated by solving

argmin
P

n
∑

i=1

(xT
i PL̄i)

2

ai2 + bi
2 (12)

subject to ‖P‖ = 1, where ‖P‖ is the Frobenius norm of P .

A straight-forward approach to enforce (7) is by incorporat-

ing it as a hard constraint in (12). However, experiments us-

ing a number of state-of-the-art optimization schemes show

that such a solution often converges to local minima.

4.4. Enforcing Constraints

Given a proper camera projection matrix, the corre-

sponding line projection matrix will automatically satisfy

(7). However, given an improper 3 × 6 line projection ma-

trix not satisfying (7), the corresponding camera projection

matrix cannot be decomposed into one with proper intrin-

sic and extrinsic parameters. Based on this observation, we

propose to enforce (7) by enforcing a proper decomposition

of the camera projection matrix.

Consider a simplified scenario where the principal point

(u0, v0) (which is often located at the image centre) is

known. After translating the image origin to the principal

point, the camera projection matrix can be expressed as

P = K[R T] =





fx 0 0
0 fy 0
0 0 1









r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3



 ,

and the corresponding line projection matrix can be ex-

pressed as

P =





fy 0 0
0 fx 0
0 0 fxfy



P ′, (13)

1⊗ stands for Kronecker product.

1775



where

P ′T
i =

















ρ′i1
ρ′i2
ρ′i3
ρ′i4
ρ′i5
ρ′i6

















= (−1)(i+1)

















rj3tk − tjrk3
tjrk2 − rj2tk
rj2rk3 − rj3rk2
rj1tk − tjrk1
rj1rk2 − rj2rk1
rj1rk3 − rj3rk1

















, (14)

with i 6= j 6= k ∈ {1, 2, 3} and j < k. (9) can then be

rewritten as

A~P = AD~P ′ = A′ ~P ′ = 0, (15)

where A′ = AD and D is a 18 × 18 diagonal matrix with

dii = fy for i ∈ {1, ..., 6}, dii = fx for i ∈ {7, ..., 12}, and

dii = fxfy for i ∈ {13, ..., 18}.

With known fx and fy , ~P ′ can be estimated by solv-

ing (15). Since P ′ only depends on the elements of R and

T, it can be converted to a point projection matrix in the

form of λ[R T]. The magnitude of λ is determined by

the orthogonality of R, and its sign is determined by the

sign of t3. Hence, given the camera intrinsics, the cam-

era extrinsics can be recovered using the reflection corre-

spondences. [16] also provides another way for estimating

R and T with given camera intrinsics. In Section 5, we

tackle the problem of unknown camera intrinsics by formu-

lating the problem into a nonlinear optimization by mini-

mizing reprojection errors computed based on a cross-ratio

formulation for the mirror surface. For initialization pur-

pose, we assume (u0, v0) being located at the image center,

and fx = fy = f . We choose a rough range of f and for

each sample value of f within the range, we estimate R

and T by solving (15). The point to line distance criterion

in (12) is applied to find the best focal length f ′. A camera

projection matrix can then be constructed using f ′, (u0, v0),
R and T that satisfies all the above mentioned constraints.

5. Cross-ratio Based Formulation

In this section, we obtain the camera projection matrix

and the mirror surface by minimizing reprojection errors.

We will derive a cross-ratio based formulation for recov-

ering a 3D point on the mirror surface from its reflection

correspondences. Note that minimizing point-to-point re-

projection errors can provide a stronger geometrical con-

straint than minimizing the point-to-line distances in (12)

(see Fig. 4).

Consider a point M on the mirror surface (see Fig. 5).

Let X0, X1 and X2 be its reflection correspondences on

the reference plane under three distinct poses, denoted by

P0, P1 and P2, respectively. Suppose M, X0, X1 and X2

are projected to the image as m, x0, x1 and x2 respec-

tively. We observe that the cross-ratios {M,X0;X1,X2}
and {m,x0;x1,x2} are identical, i.e.,

mr

m

dl

dp

l

l′
d′
l

m′
r

d′p

Figure 4: Minimizing point-to-line distance does not guar-

antee minimizing point-to-point distance. A 3D point M

and a 3D line L passing through it are projected by P to a

2D point mr and a 2D line l, respectively. Let m denote the

observation of M. The distance between m and mr is dp,

and the distance between m and l is dl. Suppose the same

3D point M and 3D line L are projected by P ′ to m′
r and

l′, respectively. The distance between m and m′
r is d′p, and

the distance between m and l′ is d′l. Note that d′l < dl, but

d′p > dp.

M

X0

X1

X2

m

C

P2

P1

P0
S

I

x0x1x2

Figure 5: Camera projection matrix and mirror surface

points are recovered by minimizing reprojection errors

computed from the cross-ratio constraint {M,X0; X1, X2}
= {m, x0; x1, x2}, where X0, X1, X2 are the correspon-

dences of M under three different pattern poses and m, x0,

x1, x2 are their projection on image plane. Note that X0,

X1, X2 may not be visible by the camera.

|X1M||X2X0|

|X1X0||X2M|
=

|x1m||x2x0|

|x1x0||x2m|
. (16)

Let s be the distance between X2 and M (i.e., s =
|X2M|), from (16)

s =
|X2X1||X2X0||x1x0||x2m|

|X2X0||x1x0||x2m| − |X1X0||x2x0||x1m|
. (17)

Given the projection matrix, a surface point M can be
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recovered as

M = X2 + s

−−−→
X2X0

|X2X0|
, (18)

where
−−−→
X2X0 denotes the directed ray from X2 to X0.

We optimize the projection matrix by minimizing the re-

projection errors, i.e.,

argmin
θ

n
∑

i=1

(mi −m′

i)
2, (19)

where mi is the observation of Mi, m
′
i = P(θ)Mi, and

θ = [fx, fy, u0, v0, rx, ry, rz, tx, ty, tz]
T 2. We initialize θ

using the method proposed in Section 4, and solve the opti-

mization problem using the Levenberg-Marquardt method.

Given the estimated projection matrix, the mirror surface

can be robustly reconstructed by solving (16)-(18).

6. Evaluation

To demonstrate the effectiveness of our method, we eval-

uate it using both synthetic and real data.

6.1. Synthetic Data
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Figure 6: (a) An image of the mirror Stanford bunny. (b)

RMS reprojection errors (computed against ground truth

image points). (c) RMS reconstruction errors (computed

against ground truth 3D surface points).

We employed a reflective Stanford bunny rendered by

Balzer et al. [3] to generate our synthetic data. The bunny

has a dimension of 880 × 680 × 870 mm3, and 208, 573
surface points. The images have a resolution of 960× 1280
pixels. Fig. 6(a) shows the reflective appearance of the

bunny. In their original data, the bunny is placed in a cu-

bic room, with each side of the room working as a reference

plane. The reference pattern has a dimension of 3048×3048
mm2. The center of the room is defined as the world origin.

A camera is placed in the room viewing the bunny. Since

our method requires reflection correspondences under three

2We used angle-axis representation for rotation, i.e., [rx, ry , rz ]T =
αe, where α is the rotation angle and e is the unit rotation axis.

distinct poses of a reference plane, we introduced two ad-

ditional planes for each side of the room and obtained the

reflection correspondences through ray tracing.

To evaluate the performance of our method, we added

Gaussian noise to the image points with standard devia-

tions ranging from 0 to 3.0 pixels. We initialized the pro-

jection matrix using the method described in Section 4.

The optimized projection matrix together with the 3D sur-

face points were obtained by minimizing reprojection er-

rors computed based on our cross-ratio formulation. Our

cross-ratio based formulation can effectively improve the

initialization results. An example is given in Table 1. The

error in the rotation matrix R is the angle of the rotation

induced by RgtR
T, where Rgt denotes the ground truth

rotation matrix. The error in the translation vector T is

the angle (Tdeg) between T and Tgt, where Tgt denotes

the ground truth translation vector. In addition, we obtain

Tscale = ‖Tgt −T‖ to estimate the error in T.

fu fv u0 v0 R[◦] Tdeg[
◦] Tscale

L 1.18% 0.84% 1.08% 2.78% 0.63 0.89 1.76%
EL 1.32% 1.32% 0.07% 0.10% 1.01 1.26 2.12%
CR 0.14% 0.14% 0.18% 0.09% 0.06 0.07 0.16%

Table 1: Estimation error under noise lv σ = 2.0 [pixel] on

bunny. L: linear solution of Section 4.3; EL: constrained

linear solution with strategy in Section 4.4; CR: estimation

using cross-ratio formulation initialized with EL.

Fig. 6(b) and (c) depict the root mean square (RMS) re-

projection errors and reconstruction errors, respectively, un-

der different noise levels. It can be seen that the reprojec-

tion errors are nearly identical to the noise level. While the

reconstruction errors increase linearly with the noise level,

the magnitude is relatively small compared to the size of

the object. Fig. 7 shows the reconstructed point clouds and

surfaces. Table 2 shows a quantitative comparison of our es-

timated projection matrices w.r.t the ground truth. Among

all noise levels, the errors are below ∼ 2% for fu, fv , u0, v0
and Tscale, and angular errors are below 1◦ for R and T.

Besides, we compared our method with state-of-the-art

mirror surface reconstruction method [15] under smooth

surface assumption and calibrated setup. Note that [15] as-

sumes the mirror surface is C2 continuous. In order to make

fair comparison, we perform the experiment on a sphere

patch under the same setup with the bunny dataset. Fig. 8

depicts the comparison between fully calibrated [15] and

uncalibrated (proposed) methods. The overall reconstruc-

tion accuracy is similar. While our result is not as smooth

as that from [15] due to our point-wise reconstruction, their

result shows a global reconstruction bias due to the B-spline

parameterization for the surface (see Fig. 8).
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ground truth no noise noise lv: σ = 1.0 noise lv: σ = 2.0 noise lv: σ = 3.0

Figure 7: Top row: reconstructed point clouds under different noise levels. Coordinates are w.r.t world and colors are rendered

w.r.t z coordinates. Note that the missing regions are due to the lack of correspondences in the original data set. Bottom row:

surfaces generated using screened Poisson surface reconstruction method [13].

fu [pixel] fv [pixel] u0 [pixel] v0 [pixel] R [◦] Tdeg [◦] Tscale [mm]
σ = 0.5 0.31(0.02%) 0.31(0.02%) 0.49(0.08%) 0.38(0.08%) 0.03 0.03 0.90(0.05%)
σ = 1.0 0.22(0.02%) 0.22(0.02%) 0.57(0.09%) 0.63(0.13%) 0.04 0.03 0.93(0.05%)
σ = 1.5 0.62(0.04%) 0.62(0.04%) 0.63(0.10%) 0.15(0.03%) 0.03 0.03 0.92(0.05%)
σ = 2.0 2.02(0.14%) 2.02(0.14%) 1.17(0.18%) 0.43(0.09%) 0.06 0.07 2.91(0.16%)
σ = 2.5 7.22(0.52%) 7.22(0.52%) 5.18(0.81%) 2.03(0.42%) 0.22 0.28 11.24(0.62%)
σ = 3.0 19.11(1.36%) 19.11(1.36%) 13.11(2.05%) 5.01(1.04%) 0.57 0.72 28.79(1.59%)

Table 2: Camera intrinsic and extrinsic estimation error for the Stanford bunny dataset. The ground truth for the intrinsic

parameters are fu = 1400, fv = 1400, and (u0, v0) = (639.5, 479.5).
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Figure 8: Upper left: ground truth. Lower left: RMS

reconstruction errors. Upper right ([15]) & lower right

(ours): reconstruction (blue) against ground truth (red) un-

der σ = 2.0. Reconstruction accuracy is similar.

6.2. Real Data

We evaluated our method on a sauce boat and two

spheres respectively (see Fig. 9). We captured images us-

Figure 9: Top row: sauce boat and two spheres in real ex-

periments. Bottom row: a sweeping line is reflected by two

spheres under three distinct positions of the LCD monitor

while the camera and mirror surfaces are stationary.

ing a Canon EOS 40D digital camera with a 24-70 mm

lens. A 19 inch LCD monitor was used as a reference plane

and was placed at three different positions. For each posi-

tion, we captured an image sequence of a thin bright stripe

sweeping across the screen in vertical direction and then in

horizontal direction [14, 10]. For each direction, we exam-

ined the intensity value sequence for each image point, and

established the reflection correspondence by identifying the

image in which the intensity attained a peak value. To im-

prove the accuracy, quadratic approximation was applied to
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(a) (b) (c) (d) (e) (f)

Figure 10: (a)-(c): reconstructions of sauce boat. Results are obtained under (a) calibrated camera with calibrated plane

poses (this result is treated as ground truth and overlaid in (b) and (c) for comparison (red)); (b) uncalibrated camera with

calibrated plane poses (blue); (c) uncalibrated camera with uncalibrated plane poses (ours, blue). Note the missing regions

(in red rectangle) in the reconstructed point clouds are filled by the mesh generation algorithm and should be ignored in

comparing the surface meshes. (d)-(f): reconstructions of two spheres.

fu [pixel] fv [pixel] u0 [pixel] v0 [pixel] R [◦] Tdeg [◦] Tscale [mm] Srms [mm]
Buc 36.70(0.63%) 21.99(0.38%) 99.10(5.03%) 100.00(8.13%) 9.12 1.00 19.16(8.23%) 2.55
Buu 101.70(1.75%) 86.90(1.49%) 112.10(5.69%) 113.00(9.19%) 9.86 1.99 17.02(7.34%) 2.71
Suc 63.38(1.09%) 68.01(1.17%) 61.49(3.18%) 42.7(3.47%) 6.67 1.78 33.83(8.96%) 1.78
Suu 81.38(1.40%) 86.02(1.48%) 81.67(4.14%) 56.70(4.61%) 7.17 2.13 37.69(9.98%) 2.03

Table 3: Real experiments evaluation. B and S denote the results of sauce boat and two spheres, respectively. The subscripts

uc and uu stand for experiments under an uncalibrated camera with calibrated plane poses and under an uncalibrated camera

with uncalibrated plane poses, respectively. The ground truth for the intrinsic parameters are fu = 5812.86, fv = 5812.82,

and (u0, v0) = (1971.95, 1230.02). Srms stands for the RMS reconstruction error.

the intensity profile in the neighborhood of the peak value.

After establishing reflection correspondences, we first

estimated the relative poses of the reference plane using the

method in [16]. We then formed 3D lines from the reflection

correspondences on the reference plane under the two poses

that are furthest apart (e.g., P0 and P2 in Fig. 5). These 3D

lines were used to obtain a preliminary solution of projec-

tion matrix using the method in Section 4. This was used to

initialize the nonlinear optimization described in Section 5.

To evaluate our method, we calibrated the camera and

reference plane poses using [8]. We used the calibration

result to estimate the surface and treated it as the ground

truth. This result was compared against the result obtained

using uncalibrated camera but calibrated plane poses, and

our result using uncalibrated camera and uncalibrated plane

poses. Fig. 10 shows the reconstructed surfaces and Table 3

shows the numerical errors. We aligned each estimated sur-

face with the ground truth by a rigid body transformation

before computing the reconstruction error [5]. The RMS

reconstruction errors are below 3mm. fu and fv errors are

below 2%. u0, v0 and Tscale errors are below 10%. The an-

gular errors are below 10◦ for R and below 3◦ for T. The

errors in intrinsics and extrinsics are larger than those in

the synthetic experiments. This is reasonable since accurate

specular correspondences in real case are difficult to obtain

due to the large and complex distortion caused by the mirror

surface and varying lighting condition. The qualitative and

quantitative results suggest the accuracy of our method.

7. Discussions and Conclusions

A novel method is introduced for mirror surface recon-

struction. Our method works under an uncalibrated setup

and can recover the camera intrinsics and extrinsics, along

with the surface. We first proposed an analytical solution

for camera projection matrix estimation, and then derived

a cross-ratio based formulation to achieve a robust estima-

tion. Our cross-ratio based formulation does not encounter

degeneracy. However, degenerate cases (e.g., a planar mir-

ror, a spherical mirror, etc) may occur to the system due to

the application of [16] to estimate relative poses of the ref-

erence plane. Employing methods without degeneracy to

estimate the relative poses will help handle these cases.

The proposed method only needs reflection correspon-

dences as input and removes the restrictive assumptions of

known motions, Cn continuity of the surface, and calibrated

camera that are being used by other existing methods. This

greatly simplifies the challenging problem of mirror surface

recovery. We believe our work can provide a meaningful in-

sight towards solving this problem. In the future, we would

like to extend the proposed method to recover complete sur-

faces and investigate inter-reflection cases.
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