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Abstract

In this paper we describe a new method for detecting and

counting a repeating object in an image. While the method

relies on a fairly sophisticated deformable part model, un-

like existing techniques it estimates the model parameters

in an unsupervised fashion thus alleviating the need for a

user-annotated training data and avoiding the associated

specificity. This automatic fitting process is carried out by

exploiting the recurrence of small image patches associated

with the repeating object and analyzing their spatial cor-

relation. The analysis allows us to reject outlier patches,

recover the visual and shape parameters of the part model,

and detect the object instances efficiently.

In order to achieve a practical system which is able to

cope with diverse images, we describe a simple and in-

tuitive active-learning procedure that updates the object

classification by querying the user on very few carefully

chosen marginal classifications. Evaluation of the new

method against the state-of-the-art techniques demonstrates

its ability to achieve higher accuracy through a better user

experience.

2. Introduction

High object-count tasks are often encountered in indus-

trial and scientific applications such as product inspection

in manufacturing lines and cell counting for research and

clinical purposes. These tasks typically require a consider-

able amount of repetitive human effort, and in many cases,

a high degree of expertise. Automating the detection of

objects using computerized vision is a highly challenging

problem due to the visual complexity arising from irregular

arrangement of the objects, variability in shape and illumi-

nation, mutual occlusions and similarity to other elements

in the scene.

The object recognition literature in this context divides

into two approaches. The first class of methods detect ob-

jects instances based on the raw response of various visual

descriptors [11, 16, 18, 24] or on more detailed and gen-

erative object models [23, 13, 30, 4, 1, 20]. These meth-

ods assume the objects are well-resolved and identifiable

in the image. The second class of methods [9, 8, 21, 17]

is geared towards massively-populated images, e.g., human

crowds, where individual objects consist of very few pixels.

These methods typically regress the object density based

on various texture descriptors, and estimate the count by

integrating the density. Unlike the previous category, typi-

cally these methods do not localize individual objects. Both

classes, however, involve training and typically require a

large number of example images along with the locations

or number of the objects they contain. The learnt models

often show a high degree of specificity to the trained data,

e.g, for a particular type of cell culture, and hence offer a

limited use with more diversity scenarios.

In this paper we present a new method for localizing and

counting one or more distinct objects in an image with no

prior training stage. The method can operate on as little

data as the input image itself, thus alleviating the need for

large annotated training sets and offering a wider applicabil-

ity compared to data-specific trained systems. The method

relies on the deformable part-based model (DPM) [15, 13]

to detect the object of interest and enjoys the model’s toler-

ance to moderate geometric deformations. While this model

is rich in parameters and requires non-trivial training ef-

forts, the key idea behind our approach is to exploit the

sheer number of object appearances in the image to auto-

matically recover its parameters.

Similarly to other patch-based similarity measures [5]

we abstract the image content by considering small image

patches as visual descriptors for the object parts and iden-

tify the ones associated with the repeating object by ex-

tracting highly-recurring windows in the image. Thus, we

avoid the need to manually choose or pre-learn specific vi-

sual descriptors for the DPM. While the recurrent patches

are likely to be part of the repeating object and can serve

for its detection, some of the patches found may not be re-

lated to the object of interest and, at the same time, a sin-

gle object occurrence is likely to stimulate the response of

several patches. Thus, in order to disambiguate the occur-
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rences and reject outliers we further search for a structural

dependency between the patches, namely the springs of the

DPM. Here again, we utilize the power hidden in the repet-

itiveness in the image which gives rise to meaningful auto-

and cross-correlation functions of the patches occurrences

that, in turn, allow us to derive spatial relations between

the object parts. Besides requiring the user to provide the

object scale, this procedure recovers the DPM parameters

automatically and requires no training stage or data.

The recovered DPM provides a likelihood estimate for

object occurrences across the image. We finally determine

whether the object of interest appears in each potential loca-

tion using a low-dimensional linear classifier which is tuned

to the input image. The classifier’s parameters are found by

an intuitive active-learning procedure in which the user is

asked to validate the classification of few carefully chosen

instances. This user-assisted approach provides a practi-

cal tool for object counting and detection, without requiring

any data beyond the input image, and is capable of adapt-

ing to the image particularities via a minimal user input.

Evaluation against state-of-the-art shows that our object de-

tection mechanism achieves higher accuracy on established

datasets as well as our user assisted procedure fulfills this

potential with very little input from the user.

2.1. Related Work

Object recognition is one of the most studied problems

in computer vision. We focus here on works which are

closely-related to object counting.

As noted above, one of the main paradigms for object

detection consists of extracting various low- and mid-level

visual descriptors from the image and using them to pre-

dict the existence of an object across the image. Exam-

ple features used are: local histograms of oriented gra-

dients [11], Hough transform [16], scale-invariant feature

transform [18], and neural networks [24]. The predicting is

done by some classifier, e.g., SVM, which is pre-trained on

a database of images annotated with object locations. Mod-

els that rely on a more sophisticated description of the ob-

ject are able to achieve higher classification accuracy and

robustness to defomations and occlusions. For example,

a hierarchy of part detectors are learned together with a

pixel-level segmentor in [30]. Higher-level geometric con-

straints are added to the Hough transform in [4]. Agrwal

et al. [1] learn a visual vocabulary of the object parts along

with their spatial relations, whereas Leibe et al. [20] learn

their individual spatial distribution. A full deformable part-

based model is used for human detection in [13, 23, 12].

While these methods achieve notable results, they consist

of parameter-rich models that require a non-trivial amount

of training data and effort. In the context of texture seg-

mentation, a fully-unsupervised generative tree model is de-

scribed in [2].

A second line of works tackles the regime where the re-

peating object is under-resolved consisting of few pixels.

These works provide count estimates (without their spa-

tial locations) by calculating the object density in the im-

age. The latter is typically regressed over various texture

attributes and the objects number is obtained by integrat-

ing the density. Chan et al. [8] feed edge and texture fea-

tures into a Gaussian process which predicts the number of

pedestrians in video sequences. An extension that collects

texture and periodicity descriptors from multiple scales is

described in [17]. While targeting less densely populated

images, Cho et al. [9] estimate crowd density using a neu-

ral network stimulated by various edge detectors. Training

these methods requires set of images along with the num-

ber of objects they contain. Hence each example provides

a single, or very few, constraints over the regression pa-

rameters. Lempitsky and Zisserman [21] also assume the

objects are well resolved and learn the density maps from

user-provided set of locations, thus reducing the number of

training images needed. This approach is further acceler-

ated using regression trees in [14].

To tackle more practical scenarios and avoid the need

for training data and its associated bias, Arteta et al. [3] de-

scribe an interactive procedure in which a linear regression

is used over dimensionally-reduced image descriptors. Yao

et al. [31] describe an interactive video annotation method

based on Hough trees and provides live feedback to mini-

mize human effort. The CellC [26] and ImageJ [10] are two

open-source interactive GUIs designed for segmenting and

counting cells in fluorescence microscope images. These

methods use intensity-based thresholds defined by the user.

Sommer et al. [28] extracted sophisticated texture descrip-

tors in where random forests are used for classification.

Similarly to our work Torii et al. [29] exploit repetitive-

ness in images, however, their work focuses on place recog-

nition task and their algorithm estimates the abundance of

various visual words, regardless of their relation to any

particular shape or object in the scene. Leung and Ma-

lik [22] extract segments consisting of a repeating patten

under affine transformations.

3. New Method

The main idea behind the new method is to avoid the

costs involved in the conventional training used for object

detection by exploiting the fact that the input image con-

tains multiple appearances of the object of interest. The

method derived in this section carries out this idea using

a fairly-sophisticated visual model, namely the deformable

part model in two steps. In the first step, given the user

specified bounding box of the object, the DPM components

are automatically recovered by extracting recurrent patches

in the image and analyzing their spatial correlation. In the

second step, the existence of the object at the potential lo-
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patches patches occurances cross-corr. DPM model

Figure 1: Left to right are: three recurrent patches and their

occurrences in the image. The spatial offset between the

occurrences indicated by the peak’s location (orange arrow)

in the cross-correlation functions. A visualization of the

DPM recovered by our method.

cations indicated by the DPM is determined using a linear

classifier. The latter is adapted to the input data by an in-

tuitive active-learning procedure which requires the user to

provide feedback on a very few marginal instances.

In the next two sections we describe the procedure for re-

covering the DPM visual descriptors (nodes) and their spa-

tial arrangement (springs). In Section 3.3 we explain how

the objects in the image are detected using the DPM found.

3.1. Extracting Recurrent Patches

Given an input image I(x) containing multiple instances

of an object, we expect to find a number of recurring patches

that take part in the object’s pattern. We extract these

patches from the image and use them as the visual descrip-

tors of the object’s DPM. The patches are extracted by a

simple iterative procedure in which we consider, at each

step, multiple random patches of the image, and pick the

one with the maximal number of appearances. In this sec-

tion we explain this procedure in detail. As the first step we

consider a small square window centered around a random

coordinate as a candidate patch p, and compute its cross-

correlation1 function, ρ(x), with every patch in the image

(centered around x).

The occurrence map z(x) of p is defined by a maximum

suppression over ρ(x), specifically; we set z(x) = 1 where

ρ(x) > 1−ε, unless ρ(x) > ρ(y) at any pixel y inside a

window around x of the same dimensions as the patches

used, and z(x) = 0 elsewhere. We use ε = 1/20 in all the

tests reported but expect this value to increase in presence

of high noise levels. The patch sizes we use is 9-by-9 pix-

els assuming the object is three times this size. Therefore,

similarly to [3], we ask the user to bound one of the objects

in the image with a box and scale the image accordingly.

Recall that the occurrence map z(x) is a binary map,

1cross-correlation value between two image patches p and q is defined

by ⟨p − µp, q − µq⟩/(σpσq) where ⟨·, ·⟩ denotes the dot-product oper-

ator, µ denotes the patch average and σ its standard-deviation. The auto-

correlation of p is obtained by setting q = p.

corrected map

auto-corr.

sqrt. Gaus.

Gaussian !t

 cross-correlation map

Figure 2: Left: correlation map of a patch containing

a straight edge (blue dashed line). Center: the auto-

correlation function of this map. Beneath is its Gaussian

approximation and at the button is the square-root of the

Gaussian approximation. Right: corrected occurrence map

(purple).

where z(x) = 1 indicates the pixels in which the im-

age I(x) and the patch p show a strong structural resem-

blance and is zero otherwise. Thus, we measure p’s fre-

quency in the image by
∑

x
z(x). We repeat this step sev-

eral times (consider 30 candidate patches in our implemen-

tation) and add the patch with the highest frequency to a list

of recurrent-patches, p1, p2, ... and keep the corresponding

occurrence maps z1, z2, .... This procedure is repeated until

the frequency of the patch found falls below some fraction

of the maximal frequency encountered in the previous steps

(30% in our implementation). To avoid multiple selections

of the same or very similar patches, we exclude pixels that

neighbor occurrences of previously selected patches. More

formally, at the j-th step we skip patches that overlap pixels

x in which
∑j−1

i=1 zi(x) > 0. We further accelerate the pro-

cess by skipping candidate patches with low variance due

to their inability to describe shape. Figure 1 shows three

patches recovered in this process and their occurrence maps.

While not dealing with object counting, Shechtman and

Irani [27] identify large shapes based on similarity between

the patches that compose it. Our work relies on a different

observations, where the patches are expected to appear once

in every object occurrence.

3.2. Structure from Patch Correlation Analysis

It is highly likely that many of the recurrent patches

found correspond to different parts of the repeating object

and hence appear in a consistent spatial arrangement, see

Figure 1 as example. We detect this spatial dependency

using a patch correlation analysis and use it to define the

spring parameters of the DPM. This step allows us to as-

sociate patch occurrences with the occurrence of a unique

object as well as reject outlier patches found in the previous

step.

Here again we exploit the object’s repetitiveness in

the image which provides meaningful auto- and cross-

correlation functions τij between pairs of occurrence maps
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zi, zj , where 1 ≤ i, j ≤ n and n is the number of patches

extracted. In principle, if the i-th and j-th patches corre-

spond to two parts of the repeating object, both of them are

expected to respond to the same occurrences of the object in

the image. Each of these responses will be recorded both in

zi and zj but at a different spatial offset which corresponds

to the patches offsets in the object. This spatial dependency

in the occurrence maps will trigger a peak in their cross-

correlation τij(x) around the coordinate x that is equal to

the spatial offset vector. Note that while false responses

may exist in the occurrence maps, it is less likely that these

occurrences will exhibit a strong mutual correlation as to

corrupt τij(x).

We detect strongly correlated patches by measuring the

ratio between the maximal value in τij(x) and the second-

largest value which acts as a local optimum (greater from

its eight nearest points). If this ratio is above some factor

(two in our implementation) we mark the patch pair (i, j)
as being correlated and extract their characteristic spatial

offset by uij = argmax
x
τij(x). Figure 1 shows patch off-

sets recovered from the correlation functions. At the end of

this procedure each patch has between zero to n− 1 paired

patches. Finally, we discard patches with less than n/10
pairs.

As we noted earlier, the image may contain recurrent

patches that do not belong to the object of interest. Typ-

ically, such patches result from straight edges which are

abundant in natural images or the existence of an additional

repeating pattern in the image. In the first case (edges) or re-

peating objects of the patch size (noise), the patches are not

expected to show a strong correlation with other patches,

hence be discarded due to their insufficient number of patch

pairs. In Section 3.3 we explain how we cope with images

that contain more than one large repeating object.

A straight edge in the object of interest poses a differ-

ent problem where the relative location of the patches con-

structing it is not well defined (along the edge). In prac-

tice, as shown in Figure 2, the correlation map, ρi(x) of

such patches contains linear features instead of well-defined

peaks. In order to come up with a valid occurrence map for

such patches, we identify the locations of each linear feature

in ρi(x) using template matching with a single instance,

r(x), of these features. We recover r(x) by first comput-

ing the auto-correlation function of ρi(x), namely R(x),
which contains a single instance convolved with itself, i.e.,

r(x) ∗ r(x) (in case of a symmetric function). By approx-

imating the function R(x) with a 2D Gaussian Gσ(x) us-

ing a PCA, we approximate r(x) using Gσ/2(x) which is

the square-root of Gσ(x) with respect to the convolution

operation. Finally, we apply a maximum suppression over

ρi(x) ∗ r(x) to obtain the new occurrence map zi(x). We

compute the auto-correlation function of every patch found,

and apply this procedure only in cases where the Gaussian

all patches occurances aggregated clustered occurances

Figure 3: All the patch occurrences found and their aggre-

gation according to their embedded coordinates.

approximation exhibits high eccentricity (above 2). Fig-

ure 2 shows the results of this correction step.

Planner Embedding. The set of recurring patches found

so far correspond to vertices of an incomplete graph whose

edges are the strongly-correlated patch pairs. Every edge in

the graph is associated with the average spatial offset vector

uij between the patches. As the final step of constructing

the shape model, we convert these relative relations into a

consistent set of coordinates in the plane which we use be-

low for efficient detection of potential object occurrences.

The planner embedding problem we are faced with can

be solved by a straightforward application of the locally-

linear embedding (LLE) technique [25] in which we seek

for global vertex coordinates, x1, ...,xn, that agree, as much

as possible, with the spatial offsets uij by minimizing

min
x1,...,xn

∑

(i,j)∈E

∥xi−xj−uij∥
2, (1)

where E denotes the set of edges in the graph (pairs of cor-

related patches). Upon differentiation w.r.t, x1, ...,xn, we

obtain a linear system over the x and y coordinates of the

vertices. Figure 1 depicts the planner arrangement found in

this step. Note, that while the object instances can appear

under different deformations, the highly-correlated patches

we are considering correspond to adjacent object parts that

experience only a small amount of the deformation. The

resulting coordinates correspond to consistent biases in the

location of every patch in the object.

Note that our DPM is not restricted to a single version of

an object or even a single object (see Figure 5). The DPM’s

graph can contain alternative nodes for certain parts of the

object, as well as multiple connected components represent-

ing different uncorrelated objects.

3.3. Object Detection

In principle every response in every occurrence map

computed provides an evidence for the appearance of an ob-

ject. We use the recovered DPM to identify locations in the

image in which there is a consensus among one or more

such evidences. We further collect a small number of basic
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angular centroid occlusion comp.

Figure 4: Features used for classification (left-to-right): dif-

ference between patches centroid and cluster center, angular

bins occupancy and rays reaching to occluder pixels in the

feature maps.

measures from each of these possible appearances and feed

this data, as a feature vector, into a linear classifier which

makes the final judgment whether an object appears in each

of the suspected locations. In order to adapt the algorithm

to the particularities of the input image and object shape, we

allow the user to fine-tune the classifier via a small number

of carefully-selected queries.

Potential Occurrences. In case a DPM has a tree

structure the detection of object instances can be performed

using dynamic programming [13] in O(nN) operations,

where N is the number of image pixels (and n is the num-

ber of parts/patches). As noted above, we utilize the patch

occurrence maps computed earlier to accelerate the search

down to O(nm) where m is the number of object occur-

rences. This is done by collecting the coordinates in which

the occurrence maps responded and shifting them to the ob-

ject center as defined by the embedded coordinates, namely

Ωi = {y : zi(y−xi) = 1}. While each instance can appear

with its own deformation, this transformation eliminates the

consistent bias in the patches location in the object and, as

shown in Figure 3, leads to substantial aggregation of the

responses. Finally, in order to extract the consensus lo-

cations, we apply a multi-model RANSAC clustering [32]

over Ω = ∪n
i=1Ωi with σ = 20 (two thirds of the object

size). At every cluster k we store its center coordinate ck,

the list of patches assigned to it Ck, and their coordinates

yj , where j ∈ Ck.

Occurrence Descriptors. In order to determine whether

the clusters found indicate a true object appearance or not

while coping with the unique characteristics of the input im-

age, we resort to a fairly low-dimensional linear separator to

perform this classification. The classification is based on the

following basic fidelity measures extracted at every cluster

k found: (i) number of patches in the cluster, (ii) average

correlation values between patches and the image (given by

ρ), (iii) the average deformation in the cluster, given by

∑

j,j′∈Ck,(ij ,ij′ )∈E

∥yj−yj′−uij ,ij′ ∥/
∣

∣{j, j′ ∈ Ck, (ij , i
′
j) ∈ E}

∣

∣,

(2)

(iv) the average distance between the centroid of the patches

present in a cluster and its center ∥
∑

j∈Ck yj/|C
k| − ck∥,

which is expected to vanish when all patches participate.

In order to compensate clusters near the image border

we add (v) the distance between the cluster center, ck, and

the closest boundary (as long as the distance falls below the

object radius).

Repeating patterns in the image, besides the object of

interest, are likely to consist of a different composition of

patches. Hence, in order to differentiate between differ-

ent populations of objects we apply PCA over the set of

vectors that indicate which patch participates in each clus-

ter, vki = 1 if i ∈ Ck and zero otherwise. Thus, as the

(vii)-(ix) features, we compute the ⟨vk, a1⟩, ⟨v
k, a2⟩ and

⟨vk, a3⟩, where a1, a2 and a3 are the three most active prin-

cipal directions. Figure 4 visualizes some of the features we

described and Figure 5 demonstrates the improved ability to

discriminate between distinct types of objects based on the

last feature.

Occluded objects are another case requiring compensa-

tion due to missing patches. If the occluding object is an

instance of the object being counted, its presence is likely

to be captured by one of the clusters found. However, since

none of the objects are identified at this stage, we only

look at the feature values at locations of potential occlud-

ers. More specificity, we generate feature maps containing

the feature values extracted from each cluster rendered at

pixels that the object is expected to occupy, i.e., circles lo-

cated around the cluster centers ck. We use the inputted

object size as the diameter of the circles. The rest of the

maps values are set to zero. Then, for each empty angular

bin in a cluster we evaluate feature values from the maps

and concatenate it to the cluster’s feature vector describe

above. Thus, the feature vectors we assign to each cluster,

fk, is a 18-dimensional vector. The values arriving from

different bins are added together. As shown in Figure 4 the

sampled points are the endpoints of rays emanating from

the cluster centers, passing through the empty angular bins,

and extending to a distance equals to the object size.

Occurrence Classification. Finally, we determine

whether each cluster corresponds to an object appearance or

not by feeding its feature vector to a linear SVM, namely,

sign(⟨fj ,w⟩ − b), where w and b are the separation vec-

tor and offset value. As noted above, we allow the user to

tune this decision making to the particularities of the in-

put image by updating these parameters through the fol-

lowing query-based procedure. At the first step, we ini-

tiate w = (1, 0, 0, ...), i.e., consider only the number of

patches, and compute biases bmin and bmax that lead to all

positive and all negative decisions. We extract 20 clusters

that uniformly sample this range with their scores, ⟨fj ,w⟩,
and allow the user to change their classification by picking

b ∈ [bmin, bmax] using a slider. The classifications are con-
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without PCA feature with PCA feature

Figure 5: PCA-based patch composition demonstration:

PCA descriptors allow us to differentiate between distinct

types of repetitive objects. The top example is the result

obtained with and without these descriptors when insisting

to count only the white pieces. In the bottom examples we

count two specific types of screws and pralines and exclude

the rest (with PCA descriptors used).

veyed by rendering a red or green frame around each of the

20 objects.

Given the current w and b we set δ±=min{|b−bmin|, |b−
bmax|} and proceed with the following procedure. We ran-

domly sample seven clusters that score b < ⟨fk,w⟩ <
b+δ+/2 and another three with b+δ+/2 < ⟨fk,w⟩ < b+δ+.

We do the same for the negative case; sample seven and

three clusters whose score falls inside [b− δ−/2, b] and

[b−δ−, b−δ−/2]. The classification of all the 20 clusters are

presented to the user who can change them by clicking in-

side the colored frames that mark their classification. While

the user does not have to click all 20 clusters, the proper

classification of all these clusters is inputted in this step. We

use this user input as well as all the clusters scoring above

b+δ+ and below b−δ− as tagged points in a soft-max SVM

to obtain new w and b. The classification of clusters which

are close to the separation margin is less reliable and there-

fore we devote more user validation over these clusters by

biasing the cluster selection towards the margin (14 clusters

out of 20).

We also decrease δ+ by a factor of two if the classifica-

tion of the three extreme clusters in [b+δ+/2, b+δ+] was

not changed by the user, and increase δ+ by that factor if it

was. The same goes for δ− and [b−δ−, b−δ−/2]. We repeat

this procedure with the updated values of w, b and δ± until

there are no corrections entered or not enough clusters can

be found within [b−δ−, b+δ+]. By increasing and decreas-

ing the interval [b−δ−, b+δ+] we adapt online the criterion

of marginal classifications and allow the system to perform

both large and subtle updates in the classifier parameters.

dataset avr. err. std err.

Lempitsky

Zisserman

small 2.9/3.2 2.85/2.71

large 12.9/11.6 4.4/5.7

lg.-sm. 3.65/4.91 4.4/4.17

Hough
small 5.19 3.05

large 8.56 6.69

Template

Matching

small 12.25 9.4

large 13.75 9.8

Splitted

Template

Matching

small 12.5 13.3

large 9.8 10.4

lg.-sm. 10 7.2

our

small 1.5 1.2

large 4.25 2.5

lg.-sm. 1.93 1.6

Table 1: Small refers to the cell images produced by [19]

and large to the addition of few false larger cells into the im-

ages in this dataset. The dataset titled lg.-sm. refers to train-

ing on the mixed cells (including the large cells) and testing

on the images containing only small cells. The two error

values in Lempitsky and Zisserman’s column correspond to

the two metrics they use. Each image in the datasets con-

tains 250 cells.

#patches corr. deform. cent. ang. PCA borders occl.

77% 425% 125% 61% 116% 138% 183% 135%

Table 2: Percentage of error increase when omitting each

descriptor from the SVM classifier and testing on the lg.-

sm. dataset.

In contrast to the method of Arteta et al [3], this proce-

dure does not require the user to inspect all the objects in

the image and compare them to another image showing the

system decisions. The user is also not required to outline

regions or pinpoint items in the image.

4. Results

While the goal of this work is to derive a practical user-

assisted counting technique, we start with a test assessing

the algorithm’s accuracy limit. In this test, given the ob-

ject scale, we recover the DPM automatically, as described

in Section 3, but replace the user-assisted procedure with a

training stage in which we optimize the linear classifier over

16 simulated fluorescence microscope cells images taken

from [19], which were previously used to benchmark object

counting algorithms [21, 3].

Table 1 summarizes the results and shows that our object

detection mechanism has potential to achieve a higher accu-

racy compared to the supervised density estimation method

of Lempitsky and Zisserman [21].

Given the user supplied bounding box of the object, from
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image 1 2 3 4 5 H1 H0 clicks time

Arteta

et al.

water 31.3 20.9 29.8 20.7 18.7 4.8 28.2 16.2 1:46

beer 68.9 39.9 34.8 32.8 26.4 15.6 42.1 14.5 2:27

pills 26.1 20.6 11.4 4.3 3 2.4 3.2 16.1 2:08

small 23.8 21.7 15.6 18.6 13.9 1.7 37 24 2:48

large 29.4 51.3 47.7 36.9 27.7 3.4 49.8 17.8 2:35

CellC

water 836 442 442 442 442 5 0:25

beer 301 63 16 16 16 5 0:27

small 19.3 9.7 9.7 8.9 29.9 5 0:34

our

water 3.5 3.1 2.5 2.5 2.5 0.3 2.3 3.1 1:05 (0:17)

beer 4.5 2.7 2.8 2.7 2.7 0.7 2.6 6.3 2:08 (0:21)

pills 9.8 5.7 5.2 4.1 3.25 0.4 4.2 14.1 1:47 (0:08)

small 5.9 6.2 4.4 3.2 0.4 0.4 2.2 5.9 2:18 (0:30)

large 4.7 5.8 4.7 3.8 3.2 0.6 2.2 7.3 2:07 (0:25)

Table 3: Counting errors at each iteration are shown in the first

five rows. The final false positive H1 and negative H0 and

the total number of mouse clicks are provided in the follow-

ing rows. The total session time is given in the last row and

the pre-process portion of our method is given in brackets (this

time is included in the time row). All the images can be found

in the supplementary material.

which we derive the object scale, we compared our method

with template matching methods, namely the classic ap-

proach [7] that uses a single template, and a newer one by

Boiman and Irani [6] which breaks the template into smaller

windows. As shown in Table 1, the DPM we extract from

the image is more accurate than these approaches as it uses

patches whose recurrence and mutual correlation were re-

covered from the entire data and not deduced from a sin-

gle instance. A single template may also contain irrelevant

background features if not carefully selected.

Table 1 also shows the results obtained by running a cir-

cular Hough transform. The relatively high error produced

is a result of the fact that incomplete objects create a wide

range of scores that make it hard to find a suitable threshold

for detecting occurrences.

It is worth noting that when training both our and Lem-

pitsky and Zisserman’s systems on a dataset containing a

few extra false large cells, the performance on images con-

sisting of only small cells decreases. This specificity to the

training data is avoided in the user-assisted approaches.

In order to verify that each descriptor in the feature vec-

tor contributes to the classification accuracy, we repeated

the fully-supervised experiment eight more times. In each

experiment we ignored one of the feature elements and cal-

culated the average error. Table 2 shows the increase in

error compared to full feature vector.

In order to evaluate the user-assisted procedure against

Arteta et al.’s we conducted a user study consisting of 15

participants and 5 images. Before asking the participants to

252\250 (H1: 2, H0: 0), #C: 7

133\134 (H1: 1, H0: 2), #C:3110\134 (H1: 11, H0: 35), #C:12

213\250 (H1: 0, H0: 37), #C: 10

Figure 6: Images produced by the method of Arteta et al.

and our. In both cases less mouse clicks (indicated by ‘#C’)

where used to produce our results.

use these systems, we demonstrated how each system oper-

ates by running an example session. The order of the meth-

ods and images, tested in this study, were chosen randomly

for each participant. Table 3 shows the average counting

error at each iteration of these user-assisted procedure. The

results show that our counting procedure capable of achiev-

ing more accurate counts at slightly shorter user time and

effort (mouse clicks). Moreover, the average error on the

cell images (small) appears to be very close to the opti-

mal solution obtained by a fully-supervised training stage

(see Table 1). We find the latter to be a positive indication

that our update procedure is capable of reaching close-to-

ideal separators. The results obtained from the CellC soft-

ware [26] are also given in Table 3 and appear to achieve a

lower accuracy.

False positive and false negative errors cancel out when

considering only the total object count, however these val-

ues are important when assessing the object localization er-

ror. Table 3 indicates that our method manages to achieve

a considerably higher accuracy in this respect. We further

asked each of the participants, at the end of their session,

which system they found more easy to work with and all,

but one, preferred our query-based approach.

Finally, Figure 6 shows example images and the objects

detected by the two methods. The water bottles image is

an example where the object size changes due to perspec-

tive deformation. While the features we use namely, image

patches, are not invariant to such transformation a sufficient

number of instances at each size enables us to find enough
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identifying patches. Nonetheless, as we discuss below, we

find this lack of invariance as well as rotational to be a draw-

back of our method.

In the supplementary material we provide all the re-

sults presented here as well as additional results, including

videos capturing a user interaction session.

5. Conclusions

We presented a new method for localizing and counting

repeating objects in an image. While the new method con-

sists of a fairly detailed DPM, it requires no training phase

or data. They key idea that allow posing the model is to

exploit the shear number of object repetitions in the image.

Rather than resorting to content-specific feature spaces, we

abstract the image content and use its own patches to search

for recurrences. The DPM’s shape is obtained by a patch

correlation analysis which also serves us to efficiently iden-

tify potential object occurrences. Finally, we described a

practical system which is capable of adapting to the unique

characteristics of the image and the objects it contains. This

approach consists of a simple and intuitive active-learning

procedure which allows the user to correct the decision

of the classifier over a small number of carefully-selected

queries and without the need to inspect the entire input. Re-

sults show that the new algorithm is capable of achieving

more accurate estimates on images from a known bench-

mark dataset, and that this accuracy is more easily achieved

using the new user interaction system.

Despite the advantages presented in the previous section,

there are many scenarios in which our method is not expect

to perform well. Clearly, images with severe occlusions or

considerable object variation will prevent it from identify-

ing a sufficient number of repeating patches and their oc-

currences, which will undermine our ability to detect mean-

ingful spatial dependency. Experiments show that at least

20 object repetitions are required for the method to per-

form. As noted earlier, we do not cancel rotational or scal-

ing transformations and hence, in cases where these varia-

tions are significant, our method is not expected to perform

well unless a sufficient number of instances are available in

each configuration. Incorporating such invariances into our

method cannot be done at a patch level and requires future

work.

In Section 3 we specified a number of parameter values

used by our method. Some of the values do not play a criti-

cal role, such as the number of candidate patches sampled or

the termination criterion of this search where higher values

do not achieve significant improvement. Some scale values

do not show dependance on the data as they are defined rel-

ative to the object size, such as the patch size, RANSAC di-

ameter, and occluder’s search distance. The value that may

benefit further adaptation is the patch correlation tolerance

ε which may be depend on the level of noise or, perhaps

in extreme cases, on the object’s shape. Let us note that we

produced all the results reported in the paper using the same

set of specified values.
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