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Abstract

Given a set of surface normals, we pose a Manhattan

Frame (MF) estimation problem as a consensus set maxi-

mization that maximizes the number of inliers over the rota-

tion search space. We solve this problem through a branch-

and-bound framework, which mathematically guarantees

a globally optimal solution. However, the computational

time of conventional branch-and-bound algorithms are in-

tractable for real-time performance. In this paper, we pro-

pose a novel bound computation method within an efficient

measurement domain for MF estimation, i.e., the extended

Gaussian image (EGI). By relaxing the original problem,

we can compute the bounds in real-time, while preserv-

ing global optimality. Furthermore, we quantitatively and

qualitatively demonstrate the performance of the proposed

method for synthetic and real-world data. We also show the

versatility of our approach through two applications: ex-

tension to multiple MF estimation and video stabilization.

1. Introduction

Most man-made structures, such as urban and indoor

scenes, consist of a set of parallel and orthogonal planes.

These structures are commonly approximated by the Man-

hattan World (MW) assumption [5] in the fields of com-

puter vision and robotics. Under the MW assumption, three

orthogonal directions are used to represent a scene struc-

ture, which are referred to as the Manhattan Frame (MF)

in previous studies [27, 9]. Recent studies have proposed

a variety of MF estimation methods for scene representa-

tion [8, 25, 13, 21]. In addition to scene representation,

an accurate estimation of MF is important as a key mod-

ule for many computer vision applications, such as scene

understanding [24, 4, 11], SLAM [6, 30], focal length esti-

mation [27, 2], and 3D reconstruction [8]. Since MF esti-

mation is typically used as an early phase module in such a

wide range of applications, its overall performance is criti-

cal for the viability of the application as a whole.

∗The first and the second authors provided equal contributions.

In order to ensure the versatile applicability to a broad

range of applications, a given MF estimation method re-

quires two properties: stability and efficiency. For stability,

the robustness against noise and outliers is essential, as well

as the estimation method’s insensitivity to its initialization.

As for efficiency, the computational complexity of the MF

estimation has to remain reasonable. Even when its stability

is guaranteed, an MF estimation with a high order complex-

ity is undesirable for time critical applications, e.g., SLAM.

In this research, we propose a robust and real-time Man-

hattan Frame (MF) estimation approach that guarantees a

globally optimal solution with high stability and efficiency.

We pose the MF estimation problem as that of a consen-

sus set maximization, and solve it through a branch-and-

bound (BnB) framework [15]. Typically, the bound com-

putation is the most time-consuming part in a conventional

BnB framework [19, 12]. To combat this, we suggest a re-

laxation of the original problem and a new bound defini-

tion that can be efficiently computed on a 2D domain (i.e.,

EGI). This allows the bounds to be computed using a few

simple arithmetic operations with linear complexity, while

still preserving the global optimality and the convergence

property of the BnB framework. The proposed framework

is illustrated in Fig. 1. Our method is quantitatively and

qualitatively validated with real and synthetic data. We also

demonstrate the flexibility of our method by using it in two

applications: multiple MF estimation (a mixture of Manhat-

tan Frames) of a scene and video stabilization. In summary,

the contributions of this work are as follows:

• We propose a branch-and-bound based, real-time MF

estimation. Our approach can process around 300, 000
measurements in real-time.

• We relax the problem and present a new and efficient

bound computation with linear-time complexity, while

guaranteeing a globally optimal solution.

• Our method has been validated through systematic ex-

periments and real world data. To show extensibility, we

present multiple MF estimation and video stabilization

as possible applications.

• We make the source code of the proposed method avail-

able for future use.
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Figure 1: Overview of the proposed MF estimation approach. First column: Input data and distribution of surface normals of a scene from

NYUv2 dataset [24]. Second column: Its surface normal histogram, i.e., EGI, the 2D-EGI and its integral image to efficiently calculate

bounds. Third column: Illustration of the efficient bound based BnB framework using rotation search space. Last column: The estimated

globally optimal MF.

2. Related Work

MF estimation is commonly used as a key module for

high-level vision tasks, such as scene understanding and 3D

reconstruction. Understanding man-made scene structures

can be boiled down to either estimating the orthogonal van-

ishing points (VP) in the image domain or estimating the

three dominant orthogonal directions (or rotation matrix)

with 3D information, such as the depth or surface normals.

Image-based approaches fundamentally rely on the perspec-

tive cues of an image and lines, as in [8, 13, 20, 4]. On

the other hand, recent studies have focused on accurately

estimating dominant orthogonal directions using 3D infor-

mation [24, 28, 11]. As long as the related approaches are

designed to reveal the Manhattan structure of a scene, we

will refer to them as MF estimation approaches for the sake

of clarity.

Silberman et al. [24] generate all possible MF hypothe-

ses of a scene with measured perspective cues and surface

normals. Then, all the hypotheses are exhaustively scored

by the number of measurements that support the MF, and

then the best one is taken. Taylor et al. [28] estimate a

gravity vector, which corresponds to the floor normal, from

RGB-D segmentation in order to sequentially estimate the

other orthogonal normal vectors from wall plane segments.

This approach is based on the assumptions that the verti-

cal axis should be aligned with the gravity vector and that

large planar regions should be placed near the bottom of

the image. Similar to Taylor et al., Gupta et al. [11] esti-

mate and refine a single gravity vector from the y-axis of

a RGB-D image as the initial gravity vector, without ex-

tending it to MF. Ghanem et al. [9] has recently proposed a

non-convex MF estimation that exploits the inherent spar-

sity of the membership of each measured normal vector.

Unfortunately, all the algorithms mentioned above are all

sub-optimal.

As the importance of MF has grown, high stability and

efficiency of MF estimation are desirable for general pur-

poses. To guarantee stability, Bazin et al. [1, 3] propose

an orthogonal VP estimation based on the BnB framework,

which guarantees a global optimal solution. In [1], they

present an interval analysis-based BnB framework. This

strategy is improved in [3] by proposing an efficient bound

computation on the rotation search space [12]. However,

BnB frameworks are usually too slow for real-time appli-

cations [19]. For this purpose, Parra et al. [19] propose a

fast BnB rotation search method that uses an efficient bound

function computation, which can register up to 1000 points

in 2 seconds. However this method is still inadequate for

real-time applications. Straub et al. [26] propose a GPU-

supported MF inference method that operates in real-time,

but does not guarantee global optimality. In contrast to

previous studies, the proposed MF estimation method with

BnB framework guarantees a globally optimal solution, as

well as real-time efficiency.

Straub et al. [27] suggest a new perspective on MF,

which they call a mixture of Manhattan Frames (MMF).

The motivation behind the MMF is to represent general,

real-world scenes that the conventional MW assumption

fails to depict. Inspired by this work, we also extend our

method to multiple MF estimation as an application.

3. Problem Statement

The type of input for our problem can either be the 3D

surface normals (from the depth map or 3D point cloud) or

the VPs. For simplicity, we only consider the case in which

the surface normals1 are the input. Given a set of surface

normals N = {ni}Ni=1, our goal is to estimate the MF of a

scene, which consists of three orthogonal directions.

By virtue of the orthogonal property of an MF, the pro-

cess of MF estimation becomes equivalent to that of esti-

mating the proper rotation matrix R ∈ SO(3) that trans-

forms the standard basis of a coordinate to a new three or-

1Recently, Straub et al. [26] show that estimating surface normals in real-

time (about 15ms) on a single GPU is possible.

MF of the scene
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thogonal basis that are aligned to the dominant surface nor-

mals, up to a sign. Since the direction vector and its flip-

ping vector indicate the same structural support, we incor-

porate both the basis vectors and their flipping vectors into a

set E = {ej}6j=1
2 of six canonical vectors. To estimate the

optimal rotation matrix R
∗, we formulate an optimization

problem that maximizes the number of inliers as:

argmax
R∈SO(3)

∑N

i=1

∑6

j=1
J∠(ni,Rej) ≤ τK, (1)

where ∠(a,b) is the angle between the vectors a and b,

τ is the inlier threshold, and J·K is the indicator function.

Thus, the problem is to find the optimal rotation on the ro-

tation manifold (i.e., solution search space) by counting the

number of inlier normals in the input set (i.e., measurement

space). However, Eq. (1) is not easy to handle in a nu-

merical optimization. Similar to the approach of Li [17],

we introduce an auxiliary variable yij ∈ {0, 1} indicating

whether the i-th surface normal is an inlier (yij = 1) or an

outlier (yij = 0). Hence, we can reformulate Eq. (1) into an

equivalent integer programming problem:

argmax
{yij},R∈SO(3)

∑N

i=1

∑6

j=1
yij

s.t. yij∠(ni,Rej) ≤ yijτ,

yij ∈ {0, 1}, ∀i = 1 · · ·N, j = {1, · · · , 6}.

(2)

Solving Eq. (2) is still challenging due to the non-linearities

within the geodesic distance measure, the rotation man-

ifold parameterization, and the engagement between the

two aforementioned families of unknowns. Consequently,

it constitutes a challenging type of non-convex problem.

Fortunately, this can be dealt with the BnB framework de-

scribed in later sections.

4. Branch-and-Bound with Rotation Search

Branch-and-bound (BnB) is a general framework for

global optimization [15]. The basic idea of BnB is to recur-

sively divide a solution space into smaller sub-spaces and

test each sub-space with a feasibility test to see whether it

contains a globally optimal solution. The feasibility test is

conducted by values called a bound of sub-space. The sub-

spaces proven to be infeasible from the test are excluded

from the search space and the remaining sub-spaces are

subdivided for further searches until an optimal solution or

a desired accuracy is reached. The key parts of the BnB

framework are the determination of the appropriate search

space and the bound function.

4.1. Branching Part

The first key part of the BnB is to define the appropri-

ate search space. The search space in our MF estimation

2i.e., e1 = [1 0 0]⊤, e2 = [0 1 0]⊤, e3 = [0 0 1]⊤, e4 = −e1,

e5 = −e2 and e6 = −e3.

problem is the rotation space. We employ an angle-axis pa-

rameterization to represent a rotation matrix R, which is

formed by a three-dimensional vector β in a ball Bπ of ra-

dius π, whose direction and norm specify the axis β/‖β‖
and angle ‖β‖ [12]. In the angle-axis parameterization, any

rotation can be represented by a point in the ball Bπ , which

is equivalent to the search space in this problem. Let Dinit

be the initial cube that tightly encloses the ball Bπ . We di-

vide the rotation search space into smaller sub-spaces via

octal subdivision for branching in BnB, as illustrated in the

top half of the third column in Fig. 1.

4.2. Bounding Part

For rotation search, a useful and efficient bound compu-

tation is suggested by Bazin et al. [3]. We directly re-state

the result of Bazin et al. to show its connection to our prob-

lem formulation in Eq. (2).

Proposition 1 (Bazin et al. [3]). Given a cube D with the

half side length σ and the rotation R̄ corresponding to the

center of the cube D, the solutions of the following systems

are the valid lower and upper bounds, LB and UB , of the in-

lier cardinality for any rotation in the cube D, respectively.

LB = max{yij}

∑N

i=1

∑6

j=1
yij

s.t. yij∠(ni, R̄ej) ≤ yijτ,

yij ∈ {0, 1}, ∀i = 1 · · ·N, j = {1 · · · 6}.

(3)

UB = max{yij}

∑N

i=1

∑6

j=1
yij

s.t. yij∠(ni, R̄ej) ≤ yij(τ +
√
3σ),

yij ∈ {0, 1}, ∀i = 1 · · ·N, j = {1 · · · 6}.

(4)

Their proof can be directly followed in [3]. In Proposi-

tion 1, the solutions of Eqs. (3) and (4), LB and UB , are sim-

ply obtained by exhaustively checking the inlier constraint

for each normal with respect to the rotation corresponding

to the center of the given cube. We refer to this heuristic

method as the exhaustive BnB, and will be compared with

the proposed method.

According to Proposition 1, a single evaluation of either

the lower or upper bound has O(N) complexity, as each

sample must go through a bound computation. The evalu-

ation is linear to the number of input normals, but with an

exponentially increasing number of cubes in the branching

step, an efficient BnB is hard to realize. To overcome this

inefficiency, we relax the problem defined in Eq. (2) and

propose an efficient bound computation with O(1) com-

plexity, which is effective for MF estimation.

5. Efficient Bound Computation

To compute the bound values for a cube, we count the

number of normal vectors that come within the given thresh-

old. During the bound computation in Proposition 1, an

inlier domain can be represented as a region on the mea-

surement space. We call this region the inlier region (see
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Figure 2: Illustration of efficient inlier regions. We visualize only

three direction vectors for illustration purposes. (a) Boundary

point set of inlier region for lower and upper bounds on a spheri-

cal domain (XL and XU ). Blue and red indicate the boundaries of

the lower and upper inlier regions, respectively. (b) An example

of the transferred boundaries on the 2D-EGI (X̂L and X̂U ) and the

rectangular inlier regions, which enclose the transferred one (this

is nothing more than geometrical understanding). (c) Illustration

of the rectangular inlier region on the 2D-EGI.

Fig. 2a). Thus, the bound computation counts the number

of inliers within the inlier region.

Traditionally, a bound computation is the main compu-

tational bottleneck in BnB frameworks. For an efficient

bound computation, we represent a set of surface normals

as a surface normal histogram, which is an approximation

of the extended Gaussian image (EGI) representation [14].

Based on the EGI representation, we relax the original prob-

lem in Eq. (2) and propose a new set of efficient bound func-

tions. Throughout this paper, we will refer to the EGI repre-

sentation and the surface normal histogram interchangeably.

5.1. Efficent Measurement Space on 2D­EGI

For the EGI representation, we discretize a unit

sphere (i.e., measurement space) by simply tessellating by

its azimuth and elevation, which have the ranges of 0∼360◦

and 0∼180◦, respectively. A direction vector in the dis-

cretized domain is approximated and represented as its ele-

vation and azimuth angles in discrete units. By accumulat-

ing the direction vectors (surface normals) as a histogram

in each discrete unit, we can obtain the 2D-EGI (see sec-

ond column of Fig. 1). We denote the 2D-EGI space as

EGI ∈ R
m×n
+ , where m and n are the height and width de-

fined as 180 × s and 360 × s, respectively, and s denotes

the EGI resolution parameter, meaning that the angle unit

is 1/s◦. There is a trade-off between accuracy and compu-

tation time by adjusting the EGI resolution (we empirically

set s = 2 in our experiments). Although it may seem like a

simple accumulation of surface normals, the EGI provides

several powerful advantages, as it allows for a direct 2D

representation [18].

Let XL and XU be the sets of densely sampled bound-

ary points of the lower and upper inlier regions around the

six direction vectors (blue and red points of Fig. 2a) on

the spherical manifold of the measurement domain. Once

XL and XU are mapped onto the 2D-EGI, the transferred

boundaries X̂L and X̂U on the 2D-EGI domain appear as

inlier regions with a curved boundary (light blue and red

curves in Fig. 2b). The lower and upper bounds, LB and

UB , can be computed by summing the histogram values

within the transferred boundaries on the 2D-EGI domain,

but instead we further speed up the bound function evalua-

tion by relaxing the original problem.

5.2. Rectangular Lower and Upper Bounds

Regardless of the tightness of the bounds, any valid

bound guarantees a global optimum in the BnB framework

with a breadth-first-search strategy [15]. By slightly relax-

ing the inlier condition, we can improve the computational

efficiency significantly while preserving the global optimal-

ity, if its new bounds are still valid.

Since the transferred boundaries X̂L and X̂U on the 2D-

EGI have non-linear shapes, exhaustive traversal within

the transferred boundaries is mandatory for computing the

bounds. We instead relax the original problem defined in

Eq. (2) by replacing the original constraint with a set of new

axis-aligned inlier constraints as:

argmax
{yij},R∈SO(3)

∑N

i=1

∑6

j=1
yij

s.t. yijφ(ni,Rej) ≤ yijτel,

yijθ(ni,Rej) ≤ yijτaz,

yij ∈ {0, 1}, ∀i = 1 · · ·N, j = {1 · · · 6},

(5)

where φ(·, ·) and θ(·, ·) are the angle distances between two

vectors along the elevation and the azimuth axes of EGI re-

spectively, and τel and τaz are the inlier thresholds for each

axis. We will discuss how to choose these inlier thresholds

later. These constraints form the box constraint.

We can formulate the relaxed problem in Eq. (5) into

BnB by defining new valid lower and upper bound func-

tions, similar to those in Proposition 1. For the new bound

functions to be closer to those in the original problem in

Eq. (2), we find the tightest circumscribed rectangles of X̂L

and X̂U . We call these inlier regions the rectangular inlier

regions, as shown in Fig. 2. When we restrict the bound-

aries to be axis-aligned and rectangular, from the transferred

point sets X̂L,U , the new boundaries are uniquely defined by

finding a circumscribed rectangle with the left-most, right-

most, highest, and lowest points along the elevation and az-

imuth axes, as shown in Fig. 2c. We observe that the shape

of the rectangular boundaries on the 2D-EGI varies depend-

ing on the location of ri. While the height of the rectangular

boundary remains constant3, the width varies according to

the elevation angle of ri on the 2D-EGI. Then, the bound

functions of the relaxed problem in Eq. (5) can be defined

as follows:

3Actually, this does not hold in the polar regions of the 2D-EGI due to the

range limit of the 2D-EGI map. However, by cropping the rectangular

bound regions that exceed the map (or zero padding), we can equally

measure the bound functions near the polar regions. This indeed provides

the correct number by the structural property of the 2D-EGI.
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LR = max{yij}

∑N

i=1

∑6

j=1
yij

s.t. yijφ(ni, R̄ej) ≤ yijτel,

yijθ(ni, R̄ej) ≤ yijτ
L
az(φ(e2, R̄ej)),

yij∈{0, 1}, ∀i={1 · · ·N}, j={1 · · · 6},

(6)

UR = max{yij}

∑N

i=1

∑6

j=1
yij

s.t. yijφ(ni, R̄ej) ≤ yij(τel +
√
3σ),

yijθ(ni, R̄ej) ≤ yijτ
U
az(φ(e2, R̄ej)),

yij∈{0, 1}, ∀i={1 · · ·N}, j={1 · · · 6},

(7)

where e2 is the basis of the y-axis of the 3D measurement

space used to measure the elevation angle. τLaz(·) and τUaz(·)
are the inlier threshold functions for the azimuth axis, which

can be computed in advance by finding the circumscribed

rectangles of X̂L and X̂U and storing them into a look-up

table, as will be explained in Sec. 5.5.

The feasibility constraints in the aforementioned rectan-

gular inlier regions are interpreted as whether a pixel in the

2D-EGI map is inside the rectangular regions defined by the

inlier thresholds. Thus, the bound computation can be done

by summing up the values in the rectangular regions, which

can be efficiently computed using the integral image [29]

(i.e., through simple add and subtract operations with the

four corner values of the rectangular inlier region on the

integral image). The proposed rectangular bound has the

following property.

Lemma 1. For a cube D, let c∗D be the optimal inlier car-

dinality of the relaxed problem (Eq. (5)). Then the bounds

LR and UR obtained by the proposed method satisfy LR ≤
c∗D ≤ UR. Also, when the maximum half side length of D,

i.e., σ, goes to zero, then UR − LR ≤ ǫ.

Lemma 1 asserts that the proposed bound functions of

Eqs. (6) and (7) are valid, and is useful for further theo-

retical analysis on the behavior of BnB using rectangular

bounds, which will be discussed in a later section.

5.3. Algorithm Procedure

The BnB procedure is formalized in Alg. 1. The algo-

rithm reduces the search space iteratively by rejecting sub-

spaces with the feasibility test until it converges to a glob-

ally optimal value or reaches a desired accuracy level. At

first, the cube-list L is initialized with the cube Dinit that

encloses the rotation ball Bπ . At every iteration, each cube

in the cube-list is subdivided into octal sub-cubes with the

half length size of its parent cube and stored in the cube-list

while removing the parent cubes from the list. For each sub-

cube, the rotation center and the lower and upper bounds

are computed. Then, a feasibility test is conducted based on

the rectangular bounds (c.f . Sec. 5.2). Cubes with an upper

bound smaller than the maximum lower bound are excluded

from the cube-list, as they are guaranteed to not contain the

globally optimal solution. This procedure repeats iteratively

Algorithm 1 BnB on the Efficient Measurement Space

Initialize the cube list L with the rotation ball Bπ .

repeat

Subdivision(σ ← σ/2) of each cube Di of L.

for each cube Di of L do

Calculate the rotation RDi
of the cube center.

Compute the rectangular lower LRi
and upper URi

bounds.

(c.f . Sec. 5.2).

end for

L∗ = maxi LRi
, i∗ = argmaxi URi

,

U∗ = URi∗
, R∗ = RDi∗

.

Remove all the cubes from L such that URi
< L∗.

until ∃i, such that LRi
= U∗ (i.e., at least one cube whose lower bound

is U∗) or it reaches the desired accuracy level.

Output: R
∗ (i.e., the rotation matrix maximizing the number of inliers).

until a single cube, of which the lower bound and the up-

per bound are the same, remains or a desired accuracy is

achieved. The solution is the rotation of the cube center that

has the highest cardinality, i.e., the rotation guaranteed to

be globally optimum.

5.4. Analysis

Computational Complexity Compared to the related

studies [12, 3], Proposition 1 tells us that each bound com-

putation has O(N) complexity. For simplicity, let C be the

number of cubes that should be evaluated in the BnB frame-

work until convergence. Then, the computation complexity

of the whole procedure is O(CN).
In our framework, constructing the EGI by accumulat-

ing surface normals and the integral image take O(N) and

O(B), respectively, only at the initial stage, where B de-

notes the number of bins, i.e., mn of EGI. Each bound

computation with the 2D-EGI representation takes O(1) on

the integral image. Since the initial stage exhibits a lin-

ear complexity with respect to the resolution of EGI and

the BnB procedure on the proposed problem shows a linear

complexity with respect to the number of evaluated cubes

C, the overall algorithm complexity is O(C + B) which is

still linear.

We can see that the proposed method is much faster than

the exhaustive BnB method [3], which has a quadratic com-

plexity O(CN). In practice, given a single depth image

with a resolution of 640 × 480, N is around 300, 000 sam-

ples, and C is in the range of hundreds of thousands to mil-

lions. This gives a sense of what makes the proposed algo-

rithm real-time.

Convergence Since it is already shown that the rectan-

gular bounds are valid bounds by Lemma 1, the proposed

method with the rectangular bounds is guaranteed to com-

pute the globally optimal solution [15]. However, we utilize

a discrete EGI representation, where a certain sub-division

level exists such that subsequent upper bound values are

quantized into the same value. Albeit with this discretiza-

tion, our method still guarantees to converge to the bounded

globally optimal solution.
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Figure 3: Illustration of the properties of the rectangular inlier re-

gion in the 2D-EGI domain for LUT. (a) The four direction vec-

tors and their inlier regions on the sphere domain. The same color

direction vectors have the same azimuth value, but a different ele-

vation value. (b) The rectangular inlier regions on the 2D-EGI. (c)

The example of LUT, whose column axis indicates the elevation

angle, row axis indicates the level of subdivision, and the values of

entries encode the half width size of the corresponding rectangular

inlier region.

5.5. Further Speed Up

Search Space Rejection As mentioned before, given a

rotation matrix R = [r1 r2 r3] of a cube, a direction ri

and its flipping vector −ri (for i = {1, 2, 3}) indicate the

same vector, i.e., the rotation matrices R and −R indicate

the same solution. Hence, we do not need to search within

the other half-sphere in the rotation solution space.

Look-Up Table (LUT) We observed a few properties

regarding the shape of the rectangular inlier region (c.f .

Sec. 5.2). Firstly, the half height of the rectangular inlier

region remains constant, i.e., τ and τ +
√
3σ for the lower

and the upper rectangular inlier regions, respectively. That

is, τel in the 2D-EGI is equal to τ in the original domain.

Secondly, the half width of the rectangular inlier region

only depends on the elevation angle of the mapping point

of ri (or −ri) onto the 2D-EGI. Lastly, the shapes of the

rectangular inlier regions on the same elevation angle are

equal, regardless of azimuth angles, as illustrated in Fig. 3b.

Therefore, we generate a look-up table (LUT), which de-

scribes τLaz(·) and τUaz(·), by precomputing the half widths

of the rectangular inlier region along the elevation angles

and along the level of subdivision (i.e., threshold τ+
√
3σk)

in order to reduce redundant and repetitive computations.

By virtue of the subdivision rule of the rotation search

space [12], we can pre-compute a series of bound thresh-

olds as τ+
√
3σk, where σk = σ0/2

k and σ0 is the half side

length of the initial cube. At the beginning of the algorithm,

with the pre-computed bound thresholds, we construct an

M -vector LUT for each level of subdivision, where M de-

notes the user specified deepest level. Entries of each vector

store the calculated half width sizes of the rectangular inlier

regions corresponding to the elevation angles4. By concate-

nating each vector-form LUT, we can generate a matrix-

form LUT (see Fig. 3c). By using the LUT matrix, we can

obtain a rectangular inlier region without any computation

while running the algorithm.

4The width calculation is done by finding the tightest rectangle enclosing

the transferred boundaries X̂L or X̂U .

(a) κ−1
= 0.0012 (b) κ−1

= 0.08 (c) Real data

Figure 4: Distributions of surface normals. (a) and (b) are syn-

thetic data distribution according to κ−1 of vMF, 0.0012 and

0.08, respectively. (c) A sample distribution of real data from the

NYUv2 dataset [24].

6. Experimental Result

In this section, we present our experimental results to
answer the following questions:

- Sensitivity: How sensitive is our method to the parameters (EGI

resolution s and inlier threshold τ )?

- Robustness: Is our method robust to noise and outliers?

- Convergence: How many sub-divisions (iterations) are typically

required until convergence?

- Speed: How much faster is our method?

- Practicality: Does our method robustly and efficiently work with

real-world data?

6.1. Simulation

In synthetic simulations, we perform various experi-

ments to demonstrate stability (accuracy and convergence)

and efficiency (time profile) of the proposed BnB method.

For synthetic data, we randomly selected three orthogonal

direction vectors that correspond to the ground truth MF

and two additional direction vectors to generate outlier di-

rections. We then sampled 400, 000 surface normals on

the von-Mises-Fisher (vMF) distribution [7]5, which is an

isotropic distribution over the unit sphere. We also sampled

10, 000 surface normals on a uniform distribution to gener-

ate sparse noise (see Fig. 4). Unless specifically mentioned

otherwise, we fixed the inlier threshold τ as 5◦, the EGI res-

olution parameter s as 2, and the inverse kappa κ−1 as 0.01,

for each experiment. We ran each experiment 100 times on

MATLAB and measured the mean of the max angular error.

Accuracy We tested the trade-off between the accuracy

and runtime of the proposed method, with respect to the

change in EGI resolution parameter s. As shown in Fig. 5a,

the accuracy improves as the resolution parameter s in-

creases, but the ratio of the increased runtime is critical. In

all other experiments, we empirically chose the resolution

parameter s = 2.

Our method shows stable accuracy regardless of the in-

lier threshold τ (see Fig. 5b). We also evaluated the change

5The von Mises-Fisher distribution for a p-dimensional unit vec-

tor x is defined by fp(x;µ, κ) = Zp(κ)exp(κµT
x), where µ is

the mean direction, κ is the concentration and normalization con-

stant Zp(κ) = κp/2−1(2π)−p/2
Ip/2−1(κ)

−1, where Iv denotes the

modified Bessel function of the first kind at order v.
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Figure 5: Simulation results for observing the behaviors of the proposed method.

Method MPE [28] MMF [27] ES [24] RMFE [9] Exhaustive BnB [3] Proposed

θx 26.3◦ 8.1◦ 2.3◦ 2.3◦ 2.9◦ 3.0◦

θy 18.1◦ 19.6◦ 5.6◦ 4.7◦ 1.8◦ 2.0◦

θz 18.2◦ 9.8◦ 2.9◦ 2.8◦ 2.8◦ 2.9◦

Avg. 20.87◦ 12.50◦ 3.60◦ 3.27◦ 2.5◦ 2.63◦

Runtime (s) 2.8 0.1 21.4 0.9 117.06 0.07

Table 1: Comparisons of average angular error and runtime for the

ground truth of NYUv2 dataset [9].

in accuracy as the variation parameter of the vMF distribu-

tion changed, namely κ−1, and compared it with the state-

of-the-art robust MF estimation (RMFE) method [9]6. For

this experiment, we tested κ−1 within a range from 0.0012
to 0.08 on a log-scale. In Fig. 5c, the blue and red lines

indicate the mean angular error, and the light blue and light

red regions represent the standard deviation of angular er-

ror according to κ−1. While RMFE is easily biased toward

an outlier and shows an unstable error with a large standard

deviation for small κ−1 values, the proposed method shows

a stable and precise accuracy, as shown in Fig. 5c.

Convergence The lower and upper bounds of the pro-

posed BnB method converge to a specific value, demon-

strating the convergence property of the proposed algo-

rithm. It commonly converges within 7 iterations and shows

that the efficient bounds are valid, as seen in Fig. 5d.

Time Profiling To show improvements in the computa-

tional efficiency, we compared the time profiles of the ex-

haustive BnB [3] and the proposed BnB (see Fig. 6). Both

methods have three steps in common: branch (subdivision),

rotation center estimation, and bound computation. In ad-

dition, the proposed BnB has an EGI generation step for

efficient bound estimation. In the case of the exhaustive

BnB, bound computation takes 108.178s, which is 99.98%
of the entire computational time. On the other hand, the pro-

posed BnB takes only 4.6ms to compute the bounds. This

reduces the bound computation time by more than 20, 000
times, compared to that of the exhaustive BnB.

6.2. Real­World Experiment

To evaluate the performance of our method on real-world

data, we used the NYUv2 dataset [24], which contains 1449
RGB-D images of various indoor scenes. In particular, we

6 For a fair comparison, we used the publicly available code and set the

balancing parameter λ of the original paper [9] to be equal to that in our

implementation.

(a) Exhaustive BnB [3] (b) Proposed BnB

Figure 6: Time profiles of the exhaustive BnB [3] and the proposed

BnB approach.

used the recently introduced ground truth benchmark [9] of

the NYUv2 dataset for a quantitative evaluation.

We compare the exhaustive BnB and the proposed BnB

with MPE [28], MMF [27], ES [24] and RMFE [9]. Except

for the exhaustive BnB and the proposed BnB, we directly

quote the results from Ghanem et al. [9]. We tested the aver-

age angular errors of the exhaustive BnB and the proposed

BnB on similar hardware configurations (i.e., a 3GHz work-

station on MATLAB), as done by Ghanem et al. Since MPE

is based on the assumption that a large portion of the scene

consists of the floor plane, it is sensitive to scene clutter and

outliers. MMF also shows less accurate results than those of

ES and RMFE. We deduce the reason for MMF’s poor per-

formance in angular errors as the absence of noise/outlier

handling. ES and RMFE show comparable results, but their

runtimes are inefficient for real-time applications. Exhaus-

tive BnB shows the most accurate results, but its runtime

is intractable in terms of efficiency. On the other hand, the

proposed BnB performs stably while achieving real-time ef-

ficiency, as shown in Table 1. Accuracy differences between

the exhaustive BnB and the proposed one comes from the

relaxation in Eq. (5).

6.3. Applications

Extension to Multiple Manhattan Frames Since con-

ventional MW assumptions cannot represent general real-

world indoor and urban scenes, Straub et al. [27] introduces

a more flexible description of a scene, consisting of multi-

ple MF, namely a mixture of Manhattan Frames (MMF). As

an application, we extended the proposed method to MMF

estimation by sequentially finding different MFs.
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Figure 7: Extension to Multiple Manhattan Frames. We show the

RGB images, the original MMF [27] and the estimated MMF by

our method on various indoor scenes in the first, second, and last

row, respectively. (a) 1 MF. Each color indicates an MF axis. (b)

2 MFs. Each color (orange and blue) indicates different MFs.

To estimate MMF, we applied a greedy-like algorithm.

For a given input data, we estimated the optimal MF, and

updated the normal data by excluding the set of normals

that corresponds to the inliers of the optimal MF. We then

sequentially estimated the next optimal MF for the updated

normal data. As in [27], we only considered MFs with in-

lier normals that account for more than 15% of all valid

normals, to deal with poor depth measurements. We qual-

itatively demonstrated our extension, i.e., MMF inference

for the NYUv2 dataset [24], by comparing it with the orig-

inal MMF approach [27]. In Fig. 7, the proposed MMF

inference shows comparable results with that of the original

MMF, as well as the theoretical guarantees.

Video Stabilization The goal of video stabilization is to

generate a visually stable and pleasant video from a video

with jitters due to camera shakes. Depending on the in-

formation used for stabilization, the approaches can be

grouped into two categories: 2D and 3D motion-based sta-

bilization. 3D-based stabilization reflects more realistic

motion information than 2D-based stabilization. Recently,

Jia et al. [16] proposed a 3D video stabilization method

that exploits the rotation of camera poses obtained from a

built-in gyroscope in smartphones and tablet PCs. Instead

of using the 3D rotations from the gyroscope, we apply the

rotation matrices obtained by the proposed method and ver-

ify the applicability of the algorithm on video stabilization.

For the experiment, we used the NYUv2 dataset [24] with

synthetic rotation noise that mimic egocentric head motions

applied to the image and depth sequences.

We obtained the feature trajectories, shown in Fig. 8,

only to visualize the stabilization performance. The ini-

tial features were detected by FAST [22], then tracked by

KLT [23] for consecutive frames. We compared the feature

trajectories of the video processed in two different ways:

using the YouTube video editor [10] and the stabilization

(a) Ground truth motion (b) Noise

(c) YouTube video editor [10] (d) proposed

Figure 8: Video stabilization. We used the “NYUv2-living room

part 1-living room 0009” dataset. Features are tracked between

frames 265 and 285. The feature trajectories are overlaid as red

polylines on frame 285.

based on the proposed MF estimation. Fig. 8a shows the

smooth feature trajectories of the original video that visual-

ize the true camera motions. Fig. 8b shows the jittering fea-

ture trajectories of the synthetic rotation noise applied to the

original video. Since the YouTube video editor uses 2D mo-

tion information, it generates a more smoothed trajectory,

but it is far from the true camera motions, while the trajec-

tory of our method shows similar tendencies to the original

feature trajectory (see Fig. 8c and Fig. 8d). Note that the

depth normals obtained from the NYUv2 dataset are very

noisy and give inaccurate normal information. However,

the stabilization using our method shows plausible results.

More qualitative experiments and analyses for the two

applications are included in the supplementary materials.

7. Conclusion

In this paper, we propose a robust and real-time MF esti-

mation that guarantees a globally optimal solution. This can

be achieved by relaxing the original cardinality problem, so

that the computational complexity of BnB is dramatically

reduced, to a linear complexity. We prove the efficiency and

stability of the proposed method through various synthetic

and real-world experiments. The proposed method outper-

forms previous methods’ speed with precise accuracy. We

also apply the method on two applications: multiple MF

estimation and video stabilization, and confirm the applica-

bility of our work on an application level.
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