
Deeply-Recursive Convolutional Network for Image Super-Resolution

Jiwon Kim, Jung Kwon Lee and Kyoung Mu Lee

Department of ECE, ASRI, Seoul National University, Korea

{j.kim, deruci, kyoungmu}@snu.ac.kr

Abstract

We propose an image super-resolution method (SR) us-

ing a deeply-recursive convolutional network (DRCN). Our

network has a very deep recursive layer (up to 16 recur-

sions). Increasing recursion depth can improve perfor-

mance without introducing new parameters for additional

convolutions. Albeit advantages, learning a DRCN is very

hard with a standard gradient descent method due to ex-

ploding/vanishing gradients. To ease the difficulty of train-

ing, we propose two extensions: recursive-supervision and

skip-connection. Our method outperforms previous meth-

ods by a large margin.

1. Introduction

For image super-resolution (SR), receptive field of a con-

volutional network determines the amount of contextual

information that can be exploited to infer missing high-

frequency components. For example, if there exists a pat-

tern with smoothed edges contained in a receptive field, it is

plausible that the pattern is recognized and edges are appro-

priately sharpened. As SR is an ill-posed inverse problem,

collecting and analyzing more neighbor pixels can possibly

give more clues on what may be lost by downsampling.

Deep convolutional networks (DCN) succeeding in var-

ious computer vision tasks often use very large recep-

tive fields (224x224 common in ImageNet classification

[13, 24]). Among many approaches to widen the receptive

field, increasing network depth is one possible way: a con-

volutional (conv.) layer with filter size larger than a 1×1 or

a pooling (pool.) layer that reduces the dimension of inter-

mediate representation can be used. Both approaches have

drawbacks: a conv. layer introduces more parameters and a

pool. layer typically discards some pixel-wise information.

For image restoration problems such as super-resolution

and denoising, image details are very important. Therefore,

most deep-learning approaches for such problems do not

use pooling. Increasing depth by adding a new weight layer

basically introduces more parameters. Two problems can

arise. First, overfitting is highly likely. More data are now

required. Second, the model becomes too huge to be stored

and retrieved.

To resolve these issues, we use a deeply-recursive con-

volutional network (DRCN). DRCN repeatedly applies the

same convolutional layer as many times as desired. The

number of parameters do not increase while more recur-

sions are performed. Our network has the receptive field

of 41 by 41 and this is relatively large compared to SRCNN

[5] (13 by 13). While DRCN has good properties, we find

that DRCN optimized with the widely-used stochastic gra-

dient descent method does not easily converge. This is due

to exploding/vanishing gradients [1]. Learning long-range

dependencies between pixels with a single weight layer is

very difficult.

We propose two approaches to ease the difficulty of

training (Figure 3(a)). First, all recursions are supervised.

Feature maps after each recursion are used to reconstruct the

target high-resolution image (HR). Reconstruction method

(layers dedicated to reconstruction) is the same for all recur-

sions. As each recursion leads to a different HR prediction,

we combine all predictions resulting from different levels of

recursions to deliver a more accurate final prediction. The

second proposal is to use a skip-connection from input to

the reconstruction layer. In SR, a low-resolution image (in-

put) and a high-resolution image (output) share the same

information to a large extent. Exact copy of input, how-

ever, is likely to be attenuated during many forward passes.

We explicitly connect the input to the layers for output re-

construction. This is particularly effective when input and

output are highly correlated.

Contributions In summary, we propose an image super-

resolution method deeply recursive in nature. It utilizes a

very large context compared to previous SR methods with

only a single recursive layer. We improve the simple recur-

sive network in two ways: recursive-supervision and skip-

connection. Our method demonstrates state-of-the-art per-

formance in common benchmarks.

11637

Embedding network Inference network Reconstruction network

Input Output

Conv / ReLU Conv / ReLU Conv / ReLU Conv / ReLU

H－1 H0 Hd HD＋1

Filters W－1 Filters W0 Filters W Filters WD＋1

Conv / ReLU

Filters WD＋2

Figure 1: Architecture of our basic model. It consists of three parts: embedding network, inference network and reconstruction network.

Inference network has a recursive layer and its unfolded version is in Figure 2.

2. Related Work

2.1. Single­Image Super­Resolution

We apply DRCN to single-image super-resolution (SR)

[11, 7, 8]. Many SR methods have been proposed in the

computer vision community. Early methods use very fast

interpolations but yield poor results. Some of the more

powerful methods utilize statistical image priors [27, 12]

or internal patch recurrence [8, 10]. Recently, sophisticated

learning methods have been widely used to model a map-

ping from LR to HR patches. Many methods have paid at-

tention to find better regression functions from LR to HR

images. This is achieved with various techniques: neighbor

embedding [4, 19], sparse coding [31, 32, 28, 29], convolu-

tional neural network (CNN) [5] and random forest [23].

Among several recent learning-based successes, convo-

lutional neural network (SRCNN) [5] demonstrated the fea-

sibility of an end-to-end approach to SR. One possibility

to improve SRCNN is to simply stack more weight layers

as many times as possible. However, this significantly in-

creases the number of parameters and requires more data to

prevent overfitting. In this work, we seek to design a convo-

lutional network that models long-range pixel dependencies

with limited capacity. Our network recursively widens the

receptive field without increasing model capacity.

2.2. Recursive Neural Network in Computer Vision

Recursive neural networks, suitable for temporal and se-

quential data, have seen limited use on algorithms operating

on a single static image. Socher et al. [25] used a convo-

lutional network in a separate stage to first learn features

on RGB-Depth data, prior to hierarchical merging. In these

models, the input dimension is twice that of the output and

recursive convolutions are applied only two times. Similar

dimension reduction occurs in the recurrent convolutional

3	×	3	×	F	×	F	
Filters W

Conv / ReLU

of recursions = D

Hd H1 H2 HD

Filters W
Conv / ReLU

Filters W
Conv / ReLU

Filters W
Conv / ReLU

Figure 2: Unfolding inference network. Left: A recursive layer

Right: Unfolded structure. The same filter W is applied to feature

maps recursively. Our model can utilize very large context without

adding new weight parameters.

neural networks used for semantic segmentation [22]. As

SR methods predict full-sized images, dimension reduction

is not allowed.

In Eigen et al. [6], recursive layers have the same input

and output dimension, but recursive convolutions resulted in

worse performances than a single convolution due to over-

fitting. To overcome overfitting, Liang and Hu [17] uses

a recurrent layer that takes feed-forward inputs into all un-

folded layers. They show that performance increases up to

three convolutions. Their network structure, designed for

object recognition, is the same as the existing CNN archi-

tectures.

Our network is similar to the above in the sense that

recursive or recurrent layers are used with convolutions.

We further increase the recursion depth and demonstrate

that very deep recursions can significantly boost the perfor-

mance for super-resolution. We apply the same convolution

up to 16 times (the previous maximum is three).

1638

Local outputs

Hd－1

Recon Net d－1

Output d-1

(a)

Recon

Net

Recon Net d Recon Net d＋1

Final

Output

Output d Output d+1Output d－1 Output d Output d＋1

Output d

Output d－1

Output d＋1

Output D

Output dOutput 1

wd－1

wd

wd＋1

wD

w1

Hd Hd＋1

Hd－1 Hd Hd＋1

H
1

H1H1

Final

Output

: Shared filters W

HDH1
Embed

Net
Input

Skip connection

Embed

Net
Input

H1
Embed

Net
Input

Embed

Net
Input HD

Recon Net 1

Output d-1Output 1

Recon Net D

Output d+1Output D
Final

Output

(b)

Input

Embed

Net 1

Input

(c)

Embed

Net d

Embed

Net d－1

Embed

Net d＋1

Embed

Net D

H
d－1

H1H1

H
d

H1H1

H
d＋1

H1H1

H
D

H1H1

H
d－1

Hd－1

H
d

Hd－1H

H
d＋1

Hd－1

H
D

Hd－1

H
d

Hd

H
d＋1

Hd

H
D

Hd

H
d＋1

H
D

Hd＋1 H
D

HD

Hd＋1

Recon

Net 1

Recon

Net d

Recon

Net d－1

Recon

Net d＋1

Recon

Net D

Output d

Output d－1

Output d＋1

Output D

Output dOutput 1

Figure 3: (a): Our final (advanced) model with recursive-supervision and skip-connection. The reconstruction network is shared for

recursive predictions. We use all predictions from the intermediate recursion to obtain the final output. (b): Applying deep-supervision

[16] to our basic model. Unlike in (a), the model in (b) uses different reconstruction networks for recursions and more parameters are used.

(c): An example of expanded structure of (a) without parameter sharing (no recursion). The number of weight parameters is proportional

to the depth squared.

3. Proposed Method

3.1. Basic Model

Our first model, outlined in Figure 1, consists of three

sub-networks: embedding, inference and reconstruction

networks. The embedding net is used to represent the given

image as feature maps ready for inference. Next, the infer-

ence net solves the task. Once inference is done, final fea-

ture maps in the inference net are fed into the reconstruction

net to generate the output image.

The embedding net takes the input image (grayscale or

RGB) and represents it as a set of feature maps. Intermedi-

ate representation used to pass information to the inference

net largely depends on how the inference net internally rep-

resent its feature maps in its hidden layers. Learning this

representation is done end-to-end altogether with learning

other sub-networks. Inference net is the main component

that solves the task of super-resolution. Analyzing a large

image region is done by a single recursive layer. Each re-

cursion applies the same convolution followed by a rectified

linear unit (Figure 2). With convolution filters larger than

1 × 1, the receptive field is widened with every recursion.

While feature maps from the final application of the recur-

sive layer represent the high-resolution image, transforming

them (multi-channel) back into the original image space (1

or 3-channel) is necessary. This is done by the reconstruc-

tion net.

We have a single hidden layer for each sub-net. Only the

layer for the inference net is recursive. Other sub-nets are

vastly similar to the standard mutilayer perceptrons (MLP)

with a single hidden layer. For MLP, full connection of F

neurons is equivalent to a convolution with 1× 1× F × F .

In our sub-nets, we use 3×3×F×F filters. For embedding

net, we use 3×3 filters because image gradients are more in-

formative than the raw intensities for super-resolution. For

inference net, 3 × 3 convolutions imply that hidden states

are passed to adjacent pixels only. Reconstruction net also

takes direct neighbors into account.

Mathematical Formulation The network takes an in-

terpolated input image (to the desired size) as input x and

predicts the target image y as in SRCNN [5]. Our goal is to

learn a model f that predicts values ŷ = f(x), where ŷ is its

1639

estimate of ground truth output y. Let f1, f2, f3 denote sub-

net functions: embedding, inference and reconstruction, re-

spectively. Our model is the composition of three functions:

f(x) = f3(f2(f1(x))).
Embedding net f1(x) takes the input vector x and com-

putes the matrix output H0, which is an input to the infer-

ence net f2. Hidden layer values are denoted by H
−1. The

formula for embedding net is as follows:

H
−1 = max(0,W

−1 ∗ x+ b
−1) (1)

H0 = max(0,W0 ∗H−1 + b0) (2)

f1(x) = H0, (3)

where the operator ∗ denotes a convolution and max(0, ·)
corresponds to a ReLU. Weight and bias matrices are

W
−1,W0 and b

−1, b0.

Inference net f2 takes the input matrix H0 and computes

the matrix output HD. Here, we use the same weight and

bias matrices W and b for all operations. Let g denote

the function modeled by a single recursion of the recursive

layer: g(H) = max(0,W ∗H+b). The recurrence relation

is

Hd = g(Hd−1) = max(0,W ∗Hd−1 + b), (4)

for d = 1, ..., D. Inference net f2 is equivalent to the com-

position of the same elementary function g:

f2(H) = (g ◦ g ◦ · · · ◦)g(H) = gD(H), (5)

where the operator ◦ denotes a function composition and gd

denotes the d-fold product of g.

Reconstruction net f3 takes the input hidden state HD

and outputs the target image (high-resolution). Roughly

speaking, reconstruction net is the inverse operation of em-

bedding net. The formula is as follows:

HD+1 = max(0,WD+1 ∗HD + bD+1) (6)

ŷ = max(0,WD+2 ∗HD+1 + bD+2) (7)

f3(H) = ŷ. (8)

Model Properties Now we have all components for our

model. The recursive model has pros and cons. While the

recursive model is simple and powerful, we find training a

deeply-recursive network very difficult. This is in accor-

dance with the limited success of previous methods using

at most three recursions so far [17]. Among many reasons,

two severe problems are vanishing and exploding gradients

[1, 21].

Exploding gradients refer to the large increase in the

norm of the gradient during training. Such events are due to

the multiplicative nature of chained gradients. Long term

components can grow exponentially for deep recursions.

The vanishing gradients problem refers to the opposite be-

havior. Long term components approach exponentially fast

to the zero vector. Due to this, learning the relation between

distant pixels is very hard. Another known issue is that stor-

ing an exact copy of information through many recursions

is not easy. In SR, output is vastly similar to input and re-

cursive layer needs to keep the exact copy of input image

for many recursions. These issues are also observed when

we train our basic recursive model and we did not succeed

in training a deeply-recursive network.

In addition to gradient problems, there exists an issue

with finding the optimal number of recursions. If recursions

are too deep for a given task, we need to reduce the number

of recursions. Finding the optimal number requires training

many networks with different recursion depths.

3.2. Advanced Model

Recursive-Supervision To resolve the gradient and op-

timal recursion issues, we propose an improved model. We

supervise all recursions in order to alleviate the effect of

vanishing/exploding gradients. As we have assumed that

the same representation can be used again and again during

convolutions in the inference net, the same reconstruction

net is used to predict HR images for all recursions. Our re-

construction net now outputs D predictions and all predic-

tions are simultaneously supervised during training (Figure

3 (a)). We use all D intermediate predictions to compute

the final output. All predictions are averaged during test-

ing. The optimal weights are automatically learned during

training.

A similar but a different concept of supervising interme-

diate layers for a convolutional network is used in Lee et

al [16]. Their method simultaneously minimizes classifica-

tion error while improving the directness and transparency

of the hidden layer learning process. There are two sig-

nificant differences between our recursive-supervision and

deep-supervision proposed in Lee et al. [16]. They asso-

ciate a unique classifier for each hidden layer. For each ad-

ditional layer, a new classifier has to be introduced, as well

as new parameters. If this approach is used, our modified

network would resemble that of Figure 3(b). We would then

need D different reconstruction networks. This is against

our original purpose of using recursive networks, which

is avoid introducing new parameters while stacking more

layers. In addition, using different reconstruction nets no

longer effectively regularizes the network. The second dif-

ference is that Lee et al. [16] discards all intermediate clas-

sifiers during testing. However, an ensemble of all interme-

diate predictions significantly boosts the performance. The

final output from the ensemble is also supervised.

Our recursive-supervision naturally eases the difficulty

of training recursive networks. Backpropagation goes

through a small number of layers if supervising signal goes

directly from loss layer to early recursion. Summing all

gradients backpropagated from different prediction losses

1640

gives a smoothing effect. The adversarial effect of vanish-

ing/exploding gradients along one backpropagation path is

alleviated.

Moreover, the importance of picking the optimal number

of recursions is reduced as our supervision enables utilizing

predictions from all intermediate layers. If recursions are

too deep for the given task, we expect the weight for late

predictions to be low while early predictions receive high

weights.

By looking at weights of predictions, we can figure out

the marginal gain from additional recursions.

We present an expanded CNN structure of our model for

illustration purposes in Figure 3(c). If parameters are not

allowed to be shared and CNN chains vary their depths, the

number of free parameters grows fast (quadratically).

Skip-Connection Now we describe our second exten-

sion: skip-connection. For SR, input and output images are

highly correlated. Carrying most if not all of input values

until the end of the network is inevitable but very inefficient.

Due to gradient problems, exactly learning a simple linear

relation between input and output is very difficult if many

recursions exist in between them.

We add a layer skip [3] from input to the reconstruction

net. Adding layer skips is successfully used for a semantic

segmentation network [18] and we employ a similar idea.

Now input image is directly fed into the reconstruction net

whenever it is used during recursions. Our skip-connection

has two advantages. First, network capacity to store the

input signal during recursions is saved. Second, the exact

copy of input signal can be used during target prediction.

Our skip-connection is simple yet very effective. In

super-resolution, LR and HR images are vastly similar. In

most regions, differences are zero and only small number

of locations have non-zero values. For this reason, sev-

eral super-resolution methods [28, 29, 19, 2] predict image

details only. Similarly, we find that this domain-specific

knowledge significantly improves our learning procedure.

Mathematical Formulation Each intermediate predic-

tion under recursive-supervision (Figure 3(a)) is

ŷd = f3(x, g
(d)(f1(x))), (9)

for d = 1, 2, . . . , D, where f3 now takes two inputs,

one from skip-connection. Reconstruction net with skip-

connection can take various functional forms. For exam-

ple, input can be concatenated to the feature maps Hd. As

the input is an interpolated input image (roughly speaking,

ŷ ≈ x), we find f3(x, Hd) = x + f3(Hd) is enough for

our purpose. More sophisticated functions for merging two

inputs to f3 will be explored in the future.

Now, the final output is the weighted average of all inter-

mediate predictions:

ŷ =

D∑

d=1

wd · ŷd. (10)

where wd denotes the weights of predictions reconstructed

from each intermediate hidden state during recursion.

These weights are learned during training.

3.3. Training

Objective We now describe the training objective used

to find optimal parameters of our model. Given a training

dataset {x(i),y(i)}N
i=1, our goal is to find the best model f

that accurately predicts values ŷ = f(x).
In the least-squares regression setting, typical in SR, the

mean squared error 1
2 ||y − f(x)||2 averaged over the train-

ing set is minimized. This favors high Peak Signal-to-Noise

Ratio (PSNR), a widely-used evaluation criteria.

With recursive-supervision, we have D + 1 objectives

to minimize: supervising D outputs from recursions and

the final output. For intermediate outputs, we have the loss

function

l1(θ) =

D∑

d=1

N∑

i=1

1

2DN
||y(i) − ŷ

(i)
d
||2, (11)

where θ denotes the parameter set and ŷ
(i)
d

is the output

from the d-th recursion. For the final output, we have

l2(θ) =

N∑

i=1

1

2N
||y(i) −

D∑

d=1

wd · ŷ
(i)
d
||2 (12)

Now we give the final loss function L(θ). The training is

regularized by weight decay (L2 penalty multiplied by β).

L(θ) = αl1(θ) + (1− α)l2(θ) + β||θ||2, (13)

where α denotes the importance of the companion objective

on the intermediate outputs and β denotes the multiplier of

weight decay. Setting α high makes the training procedure

stable as early recursions easily converge. As training pro-

gresses, α decays to boost the performance of the final out-

put.

Training is carried out by optimizing the regression ob-

jective using mini-batch gradient descent based on back-

propagation (LeCun et al. [15]). We implement our model

using the MatConvNet1 package [30].

4. Experimental Results

In this section, we evaluate the performance of our

method on several datasets. We first describe datasets used

1http://www.vlfeat.org/matconvnet/

1641

 http://www.vlfeat.org/matconvnet/

Ground Truth A+ [29] SRCNN [5] RFL [23] SelfEx [10] DRCN (Ours)

(PSNR, SSIM) (29.83, 0.9102) (29.97, 0.9092) (29.61, 0.9026) (30.73, 0.9193) (32.17, 0.9350)

Figure 4: Super-resolution results of “img082”(Urban100) with scale factor ×4. Line is straightened and sharpened in our result,

whereas other methods give blurry lines. Our result seems visually pleasing.

Ground Truth A+ [29] SRCNN [5] RFL [23] SelfEx [10] DRCN (Ours)

(PSNR, SSIM) (23.53, 0.6977) (23.79, 0.7087) (23.53, 0.6943) (23.52, 0.7006) (24.36, 0.7399)

Figure 5: Super-resolution results of “134035” (B100) with scale factor ×4. Our result shows a clear separation between branches

while in other methods, branches are not well separated.

Ground Truth A+ [29] SRCNN [5] RFL [23] SelfEx [10] DRCN (Ours)

(PSNR, SSIM) (26.09, 0.9342) (27.01, 0.9365) (25.91, 0.9254) (27.10, 0.9483) (27.66, 0.9608)

Figure 6: Super-resolution results of “ppt3” (Set14) with scale factor ×3. Texts in DRCN are sharp while, in other methods,

character edges are blurry.

1642

Dataset Scale
Bicubic A+ [29] SRCNN [5] RFL [23] SelfEx [10] DRCN (Ours)

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Set5

×2 33.66/0.9299 36.54/0.9544 36.66/0.9542 36.54/0.9537 36.49/0.9537 37.63/0.9588

×3 30.39/0.8682 32.58/0.9088 32.75/0.9090 32.43/0.9057 32.58/0.9093 33.82/0.9226

×4 28.42/0.8104 30.28/0.8603 30.48/0.8628 30.14/0.8548 30.31/0.8619 31.53/0.8854

Set14

×2 30.24/0.8688 32.28/0.9056 32.42/0.9063 32.26/0.9040 32.22/0.9034 33.04/0.9118

×3 27.55/0.7742 29.13/0.8188 29.28/0.8209 29.05/0.8164 29.16/0.8196 29.76/0.8311

×4 26.00/0.7027 27.32/0.7491 27.49/0.7503 27.24/0.7451 27.40/0.7518 28.02/0.7670

B100

×2 29.56/0.8431 31.21/0.8863 31.36/0.8879 31.16/0.8840 31.18/0.8855 31.85/0.8942

×3 27.21/0.7385 28.29/0.7835 28.41/0.7863 28.22/0.7806 28.29/0.7840 28.80/0.7963

×4 25.96/0.6675 26.82/0.7087 26.90/0.7101 26.75/0.7054 26.84/0.7106 27.23/0.7233

Urban100

×2 26.88/0.8403 29.20/0.8938 29.50/0.8946 29.11/0.8904 29.54/0.8967 30.75/0.9133

×3 24.46/0.7349 26.03/0.7973 26.24/0.7989 25.86/0.7900 26.44/0.8088 27.15/0.8276

×4 23.14/0.6577 24.32/0.7183 24.52/0.7221 24.19/0.7096 24.79/0.7374 25.14/0.7510

Table 1: Benchmark results. Average PSNR/SSIMs for scale factor ×2, ×3 and ×4 on datasets Set5, Set14, B100 and Urban100. Red

color indicates the best performance and blue color refers the second best.

Ground Truth A+ [29] SRCNN [5] RFL [23] SelfEx [10] DRCN (Ours)

(PSNR, SSIM) (24.24, 0.8176) (24.48, 0.8267) (24.24, 0.8137) (24.16, 0.8145) (24.76, 0.8385)

Figure 7: Super-resolution results of “58060” (B100) with scale factor ×2. A three-line stripe in ground truth is also observed in

DRCN, whereas it is not clearly seen in results of other methods.

for training and testing our method. Next, our training setup

is given. We give several experiments for understanding our

model properties. The effect of increasing the number of

recursions is investigated. Finally, we compare our method

with several state-of-the-art methods.

4.1. Datasets

For training, we use 91 images proposed in Yang et al.

[31] for all experiments. For testing, we use four datasets.

Datasets Set5 [19] and Set14 [32] are often used for bench-

mark [29, 28, 5]. Dataset B100 consists of natural images

in the Berkeley Segmentation Dataset [20]. Finally, dataset

Urban100, urban images recently provided by Huang et al.

[10], is very interesting as it contains many challenging im-

ages failed by existing methods.

4.2. Training Setup

We use 16 recursions unless stated otherwise. When un-

folded, the longest chain from the input to the output passes

20 conv. layers (receptive field of 41 by 41). We set the mo-

mentum parameter to 0.9 and weight decay to 0.0001. We

use 256 filters of the size 3× 3 for all weight layers. Train-

ing images are split into 41 by 41 patches with stride 21 and

64 patches are used as a mini-batch for stochastic gradient

descent.

For initializing weights in non-recursive layers, we use

the method described in He et al. [9]. For recursive convo-

lutions, we set all weights to zero except self-connections

(connection to the same neuron in the next layer) [26, 14].

Biases are set to zero.

Learning rate is initially set to 0.01 and then decreased

by a factor of 10 if the validation error does not decrease for

5 epochs. If learning rate is less than 10−6, the procedure

1643

Recursion

1 6 11 16

P
S

N
R

 (
d

B
)

32.6

32.8

33

33.2

33.4

33.6

33.8

34

Figure 8: Recursion versus Performance for the scale factor ×3

on the dataset Set5. More recursions yielding larger receptive

fields lead to better performances.

Recursion d

1 3 5 7 9 11 13 15

P
S

N
R

 (
d

B
)

26

27.2

28.4

29.6

30.8

32

33.2

34.4

35.6

36.8

38

#2 Single

#3 Single

#4 Single

#2 Ensemble

#3 Ensemble

#4 Ensemble

Figure 9: Ensemble effect. Prediction made from intermediate

recursions are evaluated. There is no single recursion depth that

works the best across all scale factors. Ensemble of intermediate

predictions significantly improves performance.

is terminated. Training roughly takes 6 days on a machine

using one Titan X GPU.

4.3. Study of Deep Recursions

We study the effect of increasing recursion depth. We

trained four models with different numbers of recursions:

1, 6, 11, and 16. Four models use the same number of pa-

rameters except the weights used for ensemble. In Figure

8, it is shown that as more recursions are performed, PSNR

measures increase. Increasing recursion depth with a larger

image context and more nonlinearities boosts performance.

The effect of ensemble is also investigated. We first evaluate

intermediate predictions made from recursions (Figure 9).

The ensemble output significantly improves performances

of individual predictions.

4.4. Comparisons with State­of­the­Art Methods

We provide quantitative and qualitative comparisons.

For benchmark, we use public code for A+ [29], SRCNN

[5], RFL [23] and SelfEx [10]. We deal with luminance

components only as similarly done in other methods be-

cause human vision is much more sensitive to details in in-

tensity than in color.

As some methods such as A+ [29] and RFL [23] do not

predict image boundary, they require cropping pixels near

borders. For our method, this procedure is unnecessary as

our network predicts the full-sized image. For fair com-

parison, however, we also crop pixels to the same amount.

PSNRs can be slightly different from original papers as ex-

isting methods use slightly different evaluation frameworks.

We use the public evaluation code used in [10].

In Table 1, we provide a summary of quantitative eval-

uation on several datasets. Our method outperforms all ex-

isting methods in all datasets and scale factors (both PSNR

and SSIM). In Figures 4, 5, 6 and 7, example images are

given. Our method produces relatively sharp edges respec-

tive to patterns. In contrast, edges in other images are

blurred. Our method takes a second to process a 288× 288
image on a GPU Titan X.

5. Conclusion

In this work, we have presented a super-resolution

method using a deeply-recursive convolutional network.

Our network efficiently reuses weight parameters while ex-

ploiting a large image context. To ease the difficulty of

training the model, we use recursive-supervision and skip-

connection. We have demonstrated that our method outper-

forms existing methods by a large margin on benchmarked

images. In the future, one can try more recursions in or-

der to use image-level context. We believe our approach is

readily applicable to other image restoration problems such

as denoising and compression artifact removal.

References

[1] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term

dependencies with gradient descent is difficult. Neural Net-

works, IEEE Transactions on, 5(2), 1994. 1, 4

[2] M. Bevilacqua, A. Roumy, C. Guillemot, and M.-L.

Morel. Super-resolution using neighbor embedding of back-

projection residuals. In International Conference on Digital

Signal Processing, 2013. 5

1644

[3] C. M. Bishop. Pattern recognition and machine learning.

springer, 2006. 5

[4] H. Chang, D.-Y. Yeung, and Y. Xiong. Super-resolution

through neighbor embedding. In CVPR, 2004. 2

[5] C. Dong, C. C. Loy, K. He, and X. Tang. Image super-

resolution using deep convolutional networks. TPAMI, 2014.

1, 2, 3, 6, 7, 8

[6] D. Eigen, J. Rolfe, R. Fergus, and Y. LeCun. Understanding

deep architectures using a recursive convolutional network.

In ICLR Workshop, 2014. 2

[7] W. T. Freeman, E. C. Pasztor, and O. T. Carmichael. Learn-

ing low-level vision. IJCV, 2000. 2

[8] D. Glasner, S. Bagon, and M. Irani. Super-resolution from a

single image. In ICCV, 2009. 2

[9] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into

rectifiers: Surpassing human-level performance on imagenet

classification. In ICCV, 2015. 7

[10] J.-B. Huang, A. Singh, and N. Ahuja. Single image super-

resolution using transformed self-exemplars. In CVPR, 2015.

2, 6, 7, 8

[11] M. Irani and S. Peleg. Improving resolution by image reg-

istration. CVGIP: Graphical models and image processing,

53(3), 1991. 2

[12] K. I. Kim and Y. Kwon. Single-image super-resolution using

sparse regression and natural image prior. TPAMI, 2010. 2

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

NIPS, 2012. 1

[14] Q. V. Le, N. Jaitly, and G. E. Hinton. A simple way to initial-

ize recurrent networks of rectified linear units. arXiv preprint

arXiv:1504.00941, 2015. 7

[15] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. Proceed-

ings of the IEEE, 86(11), 1998. 5

[16] C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu. Deeply-

supervised nets. arXiv preprint arXiv:1409.5185, 2014. 3,

4

[17] M. Liang and X. Hu. Recurrent convolutional neural network

for object recognition. In CVPR, 2015. 2, 4

[18] J. Long, E. Shelhamer, and T. Darrell. Fully convolu-

tional networks for semantic segmentation. arXiv preprint

arXiv:1411.4038, 2014. 5

[19] C. G. Marco Bevilacqua, Aline Roumy and M.-L. A.

Morel. Low-complexity single-image super-resolution based

on nonnegative neighbor embedding. In BMVC, 2012. 2, 5,

7

[20] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database

of human segmented natural images and its application to

evaluating segmentation algorithms and measuring ecologi-

cal statistics. In ICCV, 2001. 7

[21] R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of

training recurrent neural networks. In ICML, 2013. 4

[22] P. Pinheiro and R. Collobert. Recurrent convolutional neural

networks for scene labeling. In Proceedings of The 31st In-

ternational Conference on Machine Learning, pages 82–90,

2014. 2

[23] S. Schulter, C. Leistner, and H. Bischof. Fast and accu-

rate image upscaling with super-resolution forests. In CVPR,

2015. 2, 6, 7, 8

[24] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In ICLR, 2015.

1

[25] R. Socher, B. Huval, B. Bath, C. D. Manning, and A. Y. Ng.

Convolutional-recursive deep learning for 3d object classifi-

cation. In NIPS, 2012. 2

[26] R. Socher, B. Huval, C. D. Manning, and A. Y. Ng. Semantic

compositionality through recursive matrix-vector spaces. In

EMNLP-CoNLL, 2012. 7

[27] J. Sun, Z. Xu, and H.-Y. Shum. Image super-resolution using

gradient profile prior. In CVPR, 2008. 2

[28] R. Timofte, V. De, and L. V. Gool. Anchored neighborhood

regression for fast example-based super-resolution. In ICCV,

2013. 2, 5, 7

[29] R. Timofte, V. De Smet, and L. Van Gool. A+: Adjusted

anchored neighborhood regression for fast super-resolution.

In ACCV, 2014. 2, 5, 6, 7, 8

[30] A. Vedaldi and K. Lenc. Matconvnet – convolutional neural

networks for matlab. CoRR, abs/1412.4564, 2014. 5

[31] J. Yang, J. Wright, T. S. Huang, and Y. Ma. Image super-

resolution via sparse representation. TIP, 2010. 2, 7

[32] R. Zeyde, M. Elad, and M. Protter. On single image scale-

up using sparse-representations. In Curves and Surfaces.

Springer, 2012. 2, 7

1645

